We numerically investigate the premixed flame acceleration (FA) and the subsequent deflagration to detonation transition (DDT) of pure and vitiated fuel/oxidizer mixtures in a microchannel under two extreme wall thermal conditions—an adiabatic wall and a hot, preheated isothermal wall. The numerical simulations are conducted using AMReX-Combustion PeleC, an exascale compressible reacting flow solver that leverages load-balanced block-structured adaptive mesh refinement to enable high-fidelity direct numerical simulation. We perform these simulations for a hydrogen combustion system. While it is widely known that adiabatic walls strongly promote the occurrence of DDT via FA, such a mechanism of DDT is found to be strongly limited by the flame speeds of the unreacted mixture and hence is intrinsically tied to the mixture composition. We demonstrate that the addition of water (i.e., vitiation) to the unreacted mixture leads to a significant reduction in the flame speed, thereby slowing down the FA process and subsequent DDT. With isothermal preheated walls, the pure fuel cases preferentially propagate along the wall after an auto-ignition event, leading to the formation of a “secondary” finger-flame. This secondary front subsequently undergoes transverse expansion, following which deceleration of the flame is observed. The vitiated fuel cases also exhibit a similar behavior, nonetheless exhibit much longer time-scales of auto-ignition and propagation, in addition to stronger deceleration. In summary, this study presents one of the very few simulations in the FA and DDT literature that employ detailed chemical kinetics for both adiabatic and isothermal walls.

1.
R.
Hytovick
,
J.
Chambers
,
H.
Chin
,
V. N.
Gamezo
,
A.
Poludnenko
, and
K.
Ahmed
, “
The evolution of fast turbulent deflagrations to detonations
,”
Phys. Fluids
35
,
046112
(
2023
).
2.
M.
AlKhabbaz
,
F.
Kodakoglu
,
D.
Valiev
, and
V.
Akkerman
, “
Impacts of wall conditions on flame acceleration at the early stages of burning in channels
,”
Phys. Rev. Fluids
7
,
013201
(
2022
).
3.
G. D.
Roy
,
S. M.
Frolov
,
A. A.
Borisov
, and
D. W.
Netzer
, “
Pulse detonation propulsion: Challenges, current status, and future perspective
,”
Prog. Energy Combust. Sci.
30
,
545
672
(
2004
).
4.
G.
Ciccarelli
and
S.
Dorofeev
, “
Flame acceleration and transition to detonation in ducts
,”
Prog. Energy Combust. Sci.
34
,
499
550
(
2008
).
5.
R.
Dyer
,
A.
Naples
,
T.
Kaemming
,
J.
Hoke
, and
F.
Schauer
, “
Parametric testing of a unique rotating detonation engine design
,” AIAA Paper No. AIAA 2012-121,
2012
.
6.
Y.
Wang
,
J.
Liang
,
R.
Deiterding
,
X.
Cai
, and
L.
Zhang
, “
A numerical study of the rapid deflagration-to-detonation transition
,”
Phys. Fluids
34
,
117124
(
2022
).
7.
S.
Hou
,
Y.
Liu
,
Z.
Wang
,
M.
Jing
,
Y.
Zhang
, and
B.
Zhang
, “
The potential for deflagration to detonation transition (DDT)-lessons from LPG tanker transportation accident
,”
J. Loss Prev. Process Ind.
80
,
104902
(
2022
).
8.
N. S.
Kaisare
and
D. G.
Vlachos
, “
A review on microcombustion: Fundamentals, devices and applications
,”
Prog. Energy Combust. Sci.
38
,
321
359
(
2012
).
9.
C.
Bhuvan
,
K.
Hiranandani
,
B.
Aravind
,
V.
Nair
, and
S.
Kumar
, “
Novel flame dynamics in rich mixture of premixed propane–air in a planar microcombustor
,”
Phys. Fluids
32
,
103604
(
2020
).
10.
N. S.
Kaisare
,
S. R.
Deshmukh
, and
D. G.
Vlachos
, “
Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt
,”
Chem. Eng. Sci.
63
,
1098
1116
(
2008
).
11.
C.
Liebner
,
J.
Fischer
,
S.
Heinrich
,
T.
Lange
,
H.
Hieronymus
, and
E.
Klemm
, “
Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures
,”
Process Saf. Environ. Prot.
90
,
77
82
(
2012
).
12.
S. B.
Dorofeev
, “
Flame acceleration and explosion safety applications
,”
Proc. Combust. Inst.
33
,
2161
2175
(
2011
).
13.
C.
Clanet
and
G.
Searby
, “
On the ‘tulip flame’ phenomenon
,”
Combust. flame
105
,
225
238
(
1996
).
14.
Q.
Li
,
X.
Sun
,
S.
Lu
,
Z.
Zhang
,
X.
Wang
,
S.
Han
, and
C.
Wang
, “
Experimental study of flame propagation across a perforated plate
,”
Int. J. Hydrogen Energy
43
,
8524
8533
(
2018
).
15.
T. A.
Connelly
and
D. C.
Kyritsis
, “
Experimental investigation of flame propagation in long, narrow, and open tubes
,”
J. Energy Eng.
141
,
C4014016
(
2015
).
16.
J.
Kariuki
and
R.
Balachandran
, “
Experimental investigation of dynamics of premixed acetylene–air flames in a micro-combustor
,”
Exp. Therm. Fluid Sci.
34
,
330
337
(
2010
).
17.
W.
Han
,
Y.
Gao
, and
C. K.
Law
, “
Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels: An integrated mechanistic study
,”
Combust. Flame
176
,
285
298
(
2017
).
18.
A.
Tang
,
T.
Cai
,
J.
Deng
,
D.
Zhao
,
Q.
Huang
, and
C.
Zhou
, “
Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors
,”
Energy
179
,
558
570
(
2019
).
19.
M.
Kuznetsov
,
V.
Alekseev
,
I.
Matsukov
, and
S.
Dorofeev
, “
DDT in a smooth tube filled with a hydrogen–oxygen mixture
,”
Shock Waves
14
,
205
215
(
2005
).
20.
D.
Valiev
,
V.
Bychkov
,
V.
Akkerman
,
C. K.
Law
, and
L.-E.
Eriksson
, “
Flame acceleration in channels with obstacles in the deflagration-to-detonation transition
,”
Combust. Flame
157
,
1012
1021
(
2010
).
21.
M.
Vorenkamp
,
S. A.
Steinmetz
,
T. Y.
Chen
,
X.
Mao
,
A.
Starikovskiy
,
C.
Kliewer
, and
Y.
Ju
, “
Plasma-assisted deflagration to detonation transition in a microchannel with fast-frame imaging and hybrid fs/ps coherent anti-Stokes Raman scattering measurements
,”
Proc. Combust. Inst.
39
,
5561
(
2023
).
22.
J.
Sepulveda
,
A.
Rousso
,
H.
Ha
,
T.
Chen
,
V.
Cheng
,
W.
Kong
, and
Y.
Ju
, “
Kinetic enhancement of microchannel detonation transition by ozone addition to acetylene mixtures
,”
AIAA J.
57
,
476
481
(
2019
).
23.
Z.-E.
Chen
and
M.-H.
Wu
, “
Effects of zigzag side walls on detonation initiation in a millimeter-size valveless pulsed detonation channel
,” in
Proceedings of the 24th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)
,
2013
, Vol.
28
.
24.
R. W.
Houim
and
E.
Oran
, “
Effect of surface roughness on deflagration-to-detonation transition in submilimeter channels
,” in
26th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)
,
Boston, MA
,
2017
.
25.
W.
Han
,
J.
Huang
,
G.
Gu
,
C.
Wang
, and
C. K.
Law
, “
Surface heat loss and chemical kinetic response in deflagration-to-detonation transition in microchannels
,”
Phys. Rev. Fluids
5
,
053201
(
2020
).
26.
M.
Silvestrini
,
B.
Genova
,
G.
Parisi
, and
F. J.
Leon Trujillo
, “
Flame acceleration and DDT run-up distance for smooth and obstacles filled tubes
,”
J. Loss Prev. Process Ind.
21
,
555
(
2008
).
27.
P.
Zhang
,
Z.
Pan
,
Y.
Zhu
,
Q.
Wang
,
Z.
He
, and
J.
Pan
, “
Experimental study on the deflagration-to-detonation transition distance in millimeter-scale smooth tubes
,”
AIAA J.
59
,
3144
3151
(
2021
).
28.
V. N.
Gamezo
,
T.
Ogawa
, and
E. S.
Oran
, “
Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture
,”
Proc. Combust. Inst.
31
,
2463
2471
(
2007
).
29.
V.
Bychkov
,
V.
Akkerman
,
G.
Fru
,
A.
Petchenko
, and
L.-E.
Eriksson
, “
Flame acceleration in the early stages of burning in tubes
,”
Combust. Flame
150
,
263
276
(
2007
).
30.
M. F.
Ivanov
,
A. D.
Kiverin
, and
M. A.
Liberman
, “
Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model
,”
Phys. Rev. E
83
,
056313
(
2011
).
31.
D.
Liu
,
Z.
Liu
, and
H.
Xiao
, “
Flame acceleration and deflagration-to-detonation transition in narrow channels filled with stoichiometric hydrogen-air mixture
,”
Int. J. Hydrogen Energy
47
,
11052
11067
(
2022
).
32.
D. M.
Valiev
,
V.
Akkerman
,
M.
Kuznetsov
,
L.-E.
Eriksson
,
C. K.
Law
, and
V.
Bychkov
, “
Influence of gas compression on flame acceleration in the early stage of burning in tubes
,”
Combust. Flame
160
,
97
111
(
2013
).
33.
J. D.
Ott
,
E. S.
Oran
, and
J. D.
Anderson
, Jr.
,“
A mechanism for flame acceleration in narrow tubes
,”
AIAA J.
41
,
1391
1396
(
2003
).
34.
R. W.
Houim
,
V. N.
Gamezo
, and
E. S.
Oran
, “
Flame acceleration and deflagration-to-detonation transition of hydrogen-oxygen in microchannels
,” in
Proceedings of the 34th ICDERS
,
2013
.
35.
C. M.
Dion
,
D. M.
Valiev
,
V.
Akkerman
,
B.
Demirgok
,
O. J.
Ugarte
,
L.-E.
Eriksson
, and
V.
Bychkov
, “
Dynamics of flame extinction in narrow channels with cold walls: Heat loss vs acceleration
,”
Phys. Fluids
33
,
033610
(
2021
).
36.
O. J.
Ugarte
and
V.
Akkerman
, “
Computational study of premixed flame propagation in micro-channels with nonslip walls: Effect of wall temperature
,”
Fluids
6
,
36
(
2021
).
37.
T.
Machida
,
M.
Asahara
,
A. K.
Hayashi
, and
N.
Tsuboi
, “
Three-dimensional simulation of deflagration-to-detonation transition with a detailed chemical reaction model
,”
Combust. Sci. Technol.
186
,
1758
1773
(
2014
).
38.
G.
Sun
,
H.
Deng
,
M.
Yan
,
S.
Wei
,
Z.
Xu
,
X.
Wen
,
F.
Wang
,
G.
Chen
, and
N.
Li
, “
Experimental and simulation study of premixed syngas-air deflagration dynamics with elevated temperature and CO2 addition
,”
Int. J. Hydrogen Energy
(published online
2023
).
39.
L.
Zheng
,
D.
Du
,
J.
Wang
,
Z.
Dou
,
X.
Wang
,
H.
Jin
, and
Y.
Wang
, “
Study on premixed flame dynamics of CH4/O2/CO2 mixtures
,”
Fuel
256
,
115913
(
2019
).
40.
F.
Zhong
,
L.
Zheng
,
J.
Zhang
,
X.
Wang
,
Z.
Shi
,
Y.
Miao
, and
J.
Wang
, “
Comparison of the premixed flame dynamics of CH4/O2/CO2 mixtures in closed and half-open ducts
,”
Fuel
323
,
124326
(
2022
).
41.
See https://github.com/AMReX-Combustion/PeleC for “
Pelec source
.”
42.
See https://amrex-combustion.github.io/PeleC/index.html for “
Pelec documentation
.”
43.
M. T.
Henry de Frahan
,
J. S.
Rood
,
M. S.
Day
,
H.
Sitaraman
,
S.
Yellapantula
,
B. A.
Perry
,
R. W.
Grout
,
A.
Almgren
,
W.
Zhang
,
J. B.
Bell
, and
J. H.
Chen
, “
PeleC: An adaptive mesh refinement solver for compressible reacting flows
,”
Int. J. High Perform. Comput. Appl.
(published online
2022
).
44.
H.
Sitaraman
,
S.
Yellapantula
,
M. T.
Henry de Frahan
,
B.
Perry
,
J.
Rood
,
R.
Grout
, and
M.
Day
, “
Adaptive mesh based combustion simulations of direct fuel injection effects in a supersonic cavity flame-holder
,”
Combust. Flame
232
,
111531
(
2021
).
45.
S.
Desai
,
Y.
Tao
,
R.
Sivaramakrishnan
, and
J. H.
Chen
, “
Effects of non-thermal termolecular reactions on wedge-induced oblique detonation waves
,”
Combust. Flame
112681
(
2023
).
46.
R.
Suryanarayan
,
N.
Srinivasan
,
S.
Zou
, and
S.
Yang
, “
Spectral analysis of unstable detonation
,” AIAA Paper No. AIAA 2023-0349,
2023
.
47.
S.
Ramachandran
,
N.
Srinivasan
,
T. S.
Taneja
,
H.
Zhang
, and
S.
Yang
, “
Numerical study of turbulent non-premixed cool flames at high and supercritical pressures: Real gas effects and dual peak structure
,”
Combust. Flame
249
,
112626
(
2023
).
48.
W.
Zhang
,
A.
Almgren
,
V.
Beckner
,
J.
Bell
,
J.
Blaschke
,
C.
Chan
,
M.
Day
,
B.
Friesen
,
K.
Gott
,
D.
Graves
,
M.
Katz
,
A.
Myers
,
T.
Nguyen
,
A.
Nonaka
,
M.
Rosso
,
S.
Williams
, and
M.
Zingale
, “
AMReX: A framework for block-structured adaptive mesh refinement
,”
J. Open Source Software
4
,
1370
(
2019
).
49.
M.
Berger
and
I.
Rigoutsos
, “
An algorithm for point clustering and grid generation
,”
IEEE Trans. Syst., Man, Cybern.
21
,
1278
1286
(
1991
).
50.
R. B.
Pember
,
J. B.
Bell
,
P.
Colella
,
W. Y.
Curtchfield
, and
M. L.
Welcome
, “
An adaptive cartesian grid method for unsteady compressible flow in irregular regions
,”
J. Comput. Phys.
120
,
278
304
(
1995
).
51.
P.
Colella
and
P. R.
Woodward
, “
The piecewise parabolic method (PPM) for gas-dynamical simulations
,”
J. Comput. Phys.
54
,
174
201
(
1984
).
52.
R.
Speck
,
D.
Ruprecht
,
M.
Emmett
,
M.
Minion
,
M.
Bolten
, and
R.
Krause
, “
A multi-level spectral deferred correction method
,”
BIT Numer. Math.
55
,
843
867
(
2015
).
53.
F. P.
Hamon
,
M. S.
Day
, and
M. L.
Minion
, “
Concurrent implicit spectral deferred correction scheme for low-Mach number combustion with detailed chemistry
,”
Combust. Theor. Modell.
23
,
279
309
(
2019
).
54.
W. E.
Pazner
,
A.
Nonaka
,
J. B.
Bell
,
M. S.
Day
, and
M. L.
Minion
, “
A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry
,”
Combust. Theor. Modell.
20
,
521
547
(
2016
).
55.
A.
Nonaka
,
J. B.
Bell
,
M. S.
Day
,
C.
Gilet
,
A. S.
Almgren
, and
M. L.
Minion
, “
A deferred correction coupling strategy for low Mach number flow with complex chemistry
,”
Combust. Theor. Modell.
16
,
1053
1088
(
2012
).
56.
M. S.
Day
and
J. B.
Bell
, “
Numerical simulation of laminar reacting flows with complex chemistry
,”
Combust. Theor. Modell.
4
,
535
556
(
2000
).
57.
A. C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
, “
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
,”
ACM Trans. Math. Software
31
,
363
396
(
2005
).
58.
S. D.
Cohen
,
A. C.
Hindmarsh
, and
P. F.
Dubois
, “
CVODE, a stiff/nonstiff ODE solver in C
,”
Comput. Phys.
10
,
138
143
(
1996
).
59.
D. G.
Goodwin
,
H. K.
Moffat
,
I.
Schoegl
,
R. L.
Speth
, and
B. W.
Weber
, see https://www.cantera.org for “
Cantera: An Object-Oriented Software Toolkit For Chemical Kinetics, Thermodynamics, And Transport Processes
.”
60.
J.
Li
,
Z.
Zhao
,
A.
Kazakov
, and
F. L.
Dryer
, “
An updated comprehensive kinetic model of hydrogen combustion
,”
Int. J. Chem. Kinet.
36
,
566
575
(
2004
).
61.
J.
Lawson
and
J.
Shepherd
,
Shock and Detonation Toolbox Installation Instructions
(
California Institute of Technology
,
Pasadena, CA
,
2019
).
62.
V.
Akkerman
,
V.
Bychkov
,
A.
Petchenko
, and
L.-E.
Eriksson
, “
Accelerating flames in cylindrical tubes with nonslip at the walls
,”
Combust. Flame
145
,
206
219
(
2006
).
You do not currently have access to this content.