The collision of two subsonic auto-ignition fronts with initial constant velocity was found to transit to detonation only when the collision angle was acute. The interaction of the reactive phase wave with inert hot layers constituted a singularity providing a continuous source of vorticity due to barocline effect. For an acute angle, this singularity that propagated at supersonic speed induced oblique pressure waves, of which resonance, due to the reactivity gradient geometry, near the center of the channel in the fresh gases accelerated the reactive wave fronts until transition to detonation. The numerical results of the present study, even if based on drastic assumptions, were at least in good qualitative consistency with experiments. The geometry of the reactivity gradients can thus provide another seed for the coupling between gas dynamics and heat release. Continuous pressure fluctuations and oblique shocks coming from vorticity sources and sheets from barocline effects can considerably enhance this transition. This path to transition could be complementary to that invoking mixing burning within premixed non-planar turbulent flame brush.

1.
J.
Meyer
,
P.
Urtiew
, and
A.
Oppenheim
, “
On the inadequacy of gasdynamic processes for triggering the transition to detonation
,”
Combust. Flame
14
,
13
20
(
1970
).
2.
H.
Yang
and
M. I.
Radulescu
, “
Enhanced DDT mechanism from shock-flame interactions in thin channels
,”
Proc. Combust. Inst.
38
,
3481
3495
(
2021
).
3.
Y.
Ballossier
,
F.
Virot
, and
J.
Melguizo-Gavilanes
, “
Strange wave formation and detonation onset in narrow channels
,”
J. Loss Prev. Process Ind.
72
,
104535
(
2021
).
4.
C. A.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Detonation initiation by compressible turbulence thermodynamic fluctuations
,”
Combust. Flame
213
,
172
183
(
2020
).
5.
P.
Clavin
and
H.
Tofaili
, “
A one-dimensional model for deflagration to detonation transition on the tip of elongated flames in tubes
,”
Combust. Flame
232
,
111522
(
2021
).
6.
E. S.
Oran
and
V. N.
Gamezo
, “
Origins of the deflagration-to-detonation transition in gas-phase combustion
,”
Combust. Flame
148
,
4
47
(
2007
).
7.
J. H.
Lee
,
The Detonation Phenomenon
(
Cambridge University Press
,
2008
).
8.
P.
Clavin
and
G.
Searby
,
Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars
(
Cambridge University Press
,
2016
).
9.
A.
Khokhlov
,
E. S.
Oran
, and
J. C.
Wheeler
, “
Deflagration-to-detonation transition in thermonuclear supernovae
,”
Astrophys. J.
478
,
678
(
1997
).
10.
D.
Schwer
and
K.
Kailasanath
, “
Numerical investigation of the physics of rotating-detonation-engines
,”
Proc. Combust. Inst.
33
,
2195
2202
(
2011
).
11.
V.
Anand
and
E.
Gutmark
, “
Rotating detonation combustors and their similarities to rocket instabilities
,”
Prog. Energy Combust. Sci.
73
,
182
234
(
2019
).
12.
Y.
Wang
,
J.
Liang
,
R.
Deiterding
,
X.
Cai
, and
L.
Zhang
, “
A numerical study of the rapid deflagration-to-detonation transition
,”
Phys. Fluids
34
,
117124
(
2022
).
13.
A.
Robert
,
S.
Richard
,
O.
Colin
, and
T.
Poinsot
, “
LES study of deflagration to detonation mechanisms in a downsized spark ignition engine
,”
Combust. Flame
162
,
2788
2807
(
2015
).
14.
Z.
Wang
,
H.
Liu
, and
R. D.
Reitz
, “
Knocking combustion in spark-ignition engines
,”
Prog. Energy Combust. Sci.
61
,
78
112
(
2017
).
15.
Q.-H.
Luo
and
B.-G.
Sun
, “
Inducing factors and frequency of combustion knock in hydrogen internal combustion engines
,”
Int. J. Hydrogen Energy
41
,
16296
16305
(
2016
).
16.
Y.
Li
,
W.
Gao
,
P.
Zhang
,
Z.
Fu
, and
X.
Cao
, “
Influence of the equivalence ratio on the knock and performance of a hydrogen direct injection internal combustion engine under different compression ratios
,”
Int. J. Hydrogen Energy
46
,
11982
11993
(
2021
).
17.
A. Y.
Poludnenko
,
J.
Chambers
,
K.
Ahmed
,
V. N.
Gamezo
, and
B. D.
Taylor
, “
A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae
,”
Science
366
,
eaau7365
(
2019
).
18.
Y.
Zeldovich
, “
Regime classification of an exothermic reaction with nonuniform initial conditions
,”
Combust. Flame
39
,
211
214
(
1980
).
19.
A.
Kapila
,
D.
Schwendeman
,
J.
Quirk
, and
T.
Hawa
, “
Mechanisms of detonation formation due to a temperature gradient
,”
Combust. Theory Model.
6
,
553
(
2002
).
20.
M.
Kuznetsov
,
M.
Liberman
, and
I.
Matsukov
, “
Experimental study of the preheat zone formation and deflagration to detonation transition
,”
Combust. Sci. Technol.
182
,
1628
1644
(
2010
).
21.
M.
Liberman
,
M.
Ivanov
,
A.
Kiverin
,
M.
Kuznetsov
,
A.
Chukalovsky
, and
T.
Rakhimova
, “
Deflagration-to-detonation transition in highly reactive combustible mixtures
,”
Acta Astronaut.
67
,
688
701
(
2010
).
22.
L.
Kagan
and
G.
Sivashinsky
, “
Parametric transition from deflagration to detonation: Runaway of fast flames
,”
Proc. Combust. Inst.
36
,
2709
2715
(
2017
).
23.
A.
Koksharov
,
V.
Bykov
,
L.
Kagan
, and
G.
Sivashinsky
, “
Deflagration-to-detonation transition in an unconfined space
,”
Combust. Flame
195
,
163
169
(
2018
).
24.
P. V.
Gordon
,
L.
Kagan
, and
G.
Sivashinsky
, “
Parametric transition from deflagration to detonation revisited: Planar geometry
,”
Combust. Flame
211
,
465
476
(
2020
).
25.
B.
Deshaies
and
G.
Joulin
, “
Flame-speed sensitivity to temperature changes and the deflagration-to-detonation transition
,”
Combust. Flame
77
,
201
212
(
1989
).
26.
B.-T.
Chu
, “
On the generation of pressure waves at a plane flame front
,”
Symp. (Int.) Combust.
4
,
603
612
(
1953
).
27.
E. S.
Oran
,
G.
Chamberlain
, and
A.
Pekalski
, “
Mechanisms and occurrence of detonations in vapor cloud explosions
,”
Prog. Energy Combust. Sci.
77
,
100804
(
2020
).
28.
A. Y.
Poludnenko
, “
Pulsating instability and self-acceleration of fast turbulent flames
,”
Phys. Fluids
27
,
014106
(
2015
).
29.
A. Y.
Poludnenko
,
T. A.
Gardiner
, and
E. S.
Oran
, “
Spontaneous transition of turbulent flames to detonations in unconfined media
,”
Phys. Rev. Lett.
107
,
054501
(
2011
).
30.
J.
Chambers
,
H. M.
Chin
,
A. Y.
Poludnenko
,
V. N.
Gamezo
, and
K. A.
Ahmed
, “
Spontaneous runaway of fast turbulent flames for turbulence-induced deflagration-to-detonation transition
,”
Phys. Fluids
34
,
015114
(
2022
).
31.
W.
Rakotoarison
,
B.
Maxwell
,
A.
Pekalski
, and
M. I.
Radulescu
, “
Mechanism of flame acceleration and detonation transition from the interaction of a supersonic turbulent flame with an obstruction: Experiments in low pressure propane–oxygen mixtures
,”
Proc. Combust. Inst.
37
,
3713
3721
(
2019
).
32.
W.
Rakotoarison
,
A.
Pekalski
, and
M. I.
Radulescu
, “
Detonation transition criteria from the interaction of supersonic shock-flame complexes with different shaped obstacles
,”
J. Loss Prev. Process Ind.
64
,
103963
(
2020
).
33.
B.
Savard
,
E. R.
Hawkes
,
K.
Aditya
,
H.
Wang
, and
J. H.
Chen
, “
Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions
,”
Combust. Flame
208
,
402
419
(
2019
).
34.
R.
Hytovick
,
J.
Chambers
,
H.
Chin
,
V. N.
Gamezo
,
A.
Poludnenko
, and
K.
Ahmed
, “
The evolution of fast turbulent deflagrations to detonations
,”
Phys. Fluids
35
,
046112
(
2023
).
35.
H.
Yang
and
M. I.
Radulescu
, “
Dynamics of cellular flame deformation after a head-on interaction with a shock wave: Reactive Richtmyer–Meshkov instability
,”
J. Fluid Mech.
923
,
A36
(
2021
).
36.
L.
Kagan
,
M.
Liberman
, and
G.
Sivashinsky
, “
Detonation initiation by a hot corrugated wall
,”
Proc. Combust. Inst.
31
,
2415
2420
(
2007
).
37.
M.
Liberman
,
A.
Kiverin
, and
M.
Ivanov
, “
On detonation initiation by a temperature gradient for a detailed chemical reaction models
,”
Phys. Lett. A
375
,
1803
1808
(
2011
).
38.
M.
Peswani
and
B.
Maxwell
, “
Detonation wave diffraction in stoichiometric C2H4/O2 mixtures using a global four-step combustion model
,”
Phys. Fluids
34
,
106104
(
2022
).
39.
C.
Strozzi
,
A.
Mura
,
J.
Sotton
, and
M.
Bellenoue
, “
Experimental analysis of propagation regimes during the autoignition of a fully premixed methane–air mixture in the presence of temperature inhomogeneities
,”
Combust. Flame
159
,
3323
3341
(
2012
).
40.
O.
Schulz
and
N.
Noiray
, “
Combustion regimes in sequential combustors: Flame propagation and autoignition at elevated temperature and pressure
,”
Combust. Flame
205
,
253
268
(
2019
).
41.
R.
Mével
,
J.
Sabard
,
J.
Lei
, and
N.
Chaumeix
, “
Fundamental combustion properties of oxygen enriched hydrogen/air mixtures relevant to safety analysis: Experimental and simulation study
,”
Int. J. Hydrogen Energy
41
,
6905
6916
(
2016
).
42.
M.
Reynaud
,
F.
Virot
, and
A.
Chinnayya
, “
A computational study of the interaction of gaseous detonations with a compressible layer
,”
Phys. Fluids
29
,
056101
(
2017
).
43.
S.
Taileb
,
J.
Melguizo-Gavilanes
, and
A.
Chinnayya
, “
Influence of the chemical modeling on the quenching limits of gaseous detonation waves confined by an inert layer
,”
Combust. Flame
218
,
247
259
(
2020
).
44.
A.
Suresh
and
H. T.
Huynh
, “
Accurate monotonicity-preserving schemes with Runge–Kutta time stepping
,”
J. Comput. Phys.
136
,
83
99
(
1997
).
45.
D.
Kassoy
, “
The Zeldovich spontaneous reaction wave propagation concept in the fast/modest heating limits
,”
J. Fluid Mech.
791
,
439
463
(
2016
).
46.
R. W.
Houim
and
R. T.
Fievisohn
, “
The influence of acoustic impedance on gaseous layered detonations bounded by an inert gas
,”
Combust. Flame
179
,
185
198
(
2017
).
47.
M.
Reynaud
,
S.
Taileb
, and
A.
Chinnayya
, “
Computation of the mean hydrodynamic structure of gaseous detonations with losses
,”
Shock Waves
30
,
645
669
(
2020
).
48.
J.
Shepherd
, “
Detonation waves and propulsion
,” in
Combustion in High-Speed Flows
, edited by
J.
Buckmaster
,
T. L.
Jackson
, and
A.
Kumar
(
Springer B.V
,
1994
), p.
373
.
49.
J.
Bdzil
, “
Steady-state two-dimensional detonation
,”
J. Fluid Mech.
108
,
195
226
(
1981
).
50.
G. R.
Parker
,
E. M.
Heatwole
,
M. D.
Holmes
,
B. W.
Asay
,
P. M.
Dickson
, and
J. M.
McAfee
, “
Deflagration-to-detonation transition in hot HMX and HMX-based polymer-bonded explosives
,”
Combust. Flame
215
,
295
308
(
2020
).
51.
A. M.
Khokhlov
and
E. S.
Oran
, “
Numerical simulation of detonation initiation in a flame brush: The role of hot spots
,”
Combust. Flame
119
,
400
416
(
1999
).
52.
V. N.
Gamezo
,
A. M.
Khokhlov
, and
E. S.
Oran
, “
The influence of shock bifurcations on shock-flame interactions and DDT
,”
Combust. Flame
126
,
1810
1826
(
2001
).
You do not currently have access to this content.