This paper reports the findings from a three-dimensional direct numerical simulation conducted to investigate the turbulent flame behaviors of premixed high-hydrogen content syngas (with 50% hydrogen on a per mole basis) and air mixtures. To accomplish this, a laminar flame front is placed in a homogeneous isotropic decaying turbulence field composed of a syngas–air mixture at an equivalence ratio of 0.7 and allowed to evolve for 1.4 eddy turnover times. Homogeneous isotropic turbulence is generated using a helical forcing function in a cubic domain with a grid size of 256 × 256 × 256. The Reynolds number based on the Taylor microscale, Reλ, is 57 for the generated turbulence field. The laminar flame front is placed at the center of the domain. The premixture enters the domain at a velocity of 8 m/s and at an initial temperature of 800 K. The pressure remains constant at 1 atm. In addition to quantifying the spatial and temporal evolution of turbulent characteristics and flame structure, the study also focuses on identifying turbulence/flame interactions, specifically, the impact of these interactions on flame thickness. Energy transfer from small to large scales, i.e., a reverse cascade is observed as a result of energy release due to chemical reactions at the small scales that is transferred to larger scales. The increase in turbulent intensities due to chemical reactions correlates with flame thickening.

1.
A.
Paykani
,
H.
Chehrmonavari
,
A.
Tsolakis
,
T.
Alger
,
W. F.
Northrop
, and
R. D.
Reitz
, “
Synthesis gas as a fuel for internal combustion engines in transportation
,”
Prog. Energy Combust. Sci.
90
,
100995
(
2022
).
2.
J.
Hwang
,
K.
Maharjan
, and
H.
Cho
, “
A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges
,”
Int. J. Hydrogen Energy
(in press) (
2023
).
3.
S.
Yu
,
Y.
Fan
,
Z.
Shi
,
J.
Li
,
X.
Zhao
,
T.
Zhang
, and
Z.
Chang
, “
Hydrogen-based combined heat and power systems: A review of technologies and challenges
,”
Int. J. Hydrogen Energy
(in press) (
2023
).
4.
G.
Rossiello
,
M. A.
Uzair
,
S. B.
Ahmadpanah
,
L.
Morandi
,
M.
Ferrara
,
G. D.
Rago
,
G.
Molfetta
,
A.
Saponaro
, and
M.
Torresi
, “
Design and testing of a multi-fuel industrial burner suitable for syn-gases, flare gas and pure hydrogen
,”
Therm. Sci. Eng. Prog.
42
,
101845
(
2023
).
5.
H.-M.
Li
,
G.-X.
Li
, and
G.-P.
Zhang
, “
Self-similar propagation and flame acceleration of hydrogen-rich syngas turbulent expanding flames
,”
Fuel
350
,
128813
(
2023
).
6.
J.
Pan
,
D.
Yi
,
L.
Wang
,
W.
Liang
,
G.
Shu
, and
H.
Wei
, “
Understanding multi-regime detonation development for hydrogen and syngas fuels
,”
Phys. Fluids
35
,
033605
(
2023
).
7.
G.
Sun
,
H.
Deng
,
M.
Yan
,
S.
Wei
,
Z.
Xu
,
X.
Wen
,
F.
Wang
,
G.
Chen
, and
N.
Li
, “
Experimental and simulation study of premixed syngas-air deflagration dynamics with elevated temperature and CO2 addition
,”
Int. J. Hydrogen Energy
48
,
24113
24126
(
2023
).
8.
K.
Ali
,
R.
Amna
,
M. I.
Hassan Ali
,
T.
Tsefaye
, and
K.
Kim
, “
A computational study to analyze the effect of equivalence ratio and hydrogen volume fraction on the ultra-lean burning of the syngas-fueled HCCI engine
,”
Int. J. Hydrogen Energy
47
,
25808
25818
(
2022
).
9.
V. G.
Bui
,
T. M. T.
Bui
,
V. N.
Tran
,
Z.
Huang
,
A. T.
Hoang
,
W.
Tarelko
,
V. H.
Bui
,
X. M.
Pham
, and
P. Q. P.
Nguyen
, “
Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters
,”
Int. J. Hydrogen Energy
48
,
6722
6737
(
2023
).
10.
Z.
Shang
,
Y.
Sun
,
X.
Yu
,
L.
He
, and
L.
Ren
, “
Effect of hydrogen-rich syngas direct injection on combustion and emissions in a combined fuel injection-spark-ignition engine
,”
Sustainability
15
,
8448
(
2023
).
11.
S.
Verhelst
and
T.
Wallner
, “
Hydrogen-fueled internal combustion engines
,”
Prog. Energy Combust. Sci.
35
,
490
527
(
2009
).
12.
C.
White
,
R.
Steeper
, and
A.
Lutz
, “
The hydrogen-fueled internal combustion engine: A technical review
,”
Int. J. Hydrogen Energy
31
,
1292
1305
(
2006
).
13.
D. A.
Crowl
and
Y.-D.
Jo
, “
The hazards and risks of hydrogen
,”
J. Loss Prev. Process Ind.
20
,
158
164
(
2007
).
14.
Appendix G: Spontaneous ignition temperature data
,” in
Combustion
,
5th ed.
, edited by
I.
Glassman
,
R. A.
Yetter
, and
N. G.
Glumac
(
Academic Press
,
Boston
,
2015
), pp.
705
729
.
15.
A. L.
Boehman
and
O. L.
Corre
, “
Combustion of syngas in internal combustion engines
,”
Combust. Sci. Technol.
180
,
1193
1206
(
2008
).
16.
K. J.
Whitty
,
H. R.
Zhang
, and
E. G.
Eddings
, “
Emissions from syngas combustion
,”
Combust. Sci. Technol.
180
,
1117
1136
(
2008
).
17.
T.
Lieuwen
,
V.
Yang
, and
R.
Yetter
,
Synthesis Gas Combustion
(
CRC Press
,
2009
), pp.
129
168
.
18.
S.
Luo
,
Y.
Zhou
, and
C.
Yi
, “
Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor
,”
Energy
44
,
391
395
(
2012
).
19.
N. D.
Couto
,
V. B.
Silva
,
E.
Monteiro
, and
A.
Rouboa
, “
Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices
,”
Energy
93
,
864
873
(
2015
).
20.
M.
Irfan
,
A.
Li
,
L.
Zhang
,
M.
Wang
,
C.
Chen
, and
S.
Khushk
, “
Production of hydrogen enriched syngas from municipal solid waste gasification with waste marble powder as a catalyst
,”
Int. J. Hydrogen Energy
44
,
8051
8061
(
2019
).
21.
M.
Hu
,
X.
Wang
,
J.
Chen
,
P.
Yang
,
C.
Liu
,
B.
Xiao
, and
D.
Guo
, “
Kinetic study and syngas production from pyrolysis of forestry waste
,”
Energy Convers. Manage.
135
,
453
462
(
2017
).
22.
A.
Donatelli
,
P.
Iovane
, and
A.
Molino
, “
High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant. Experimental and numerical investigations
,”
Fuel
89
,
2721
2728
(
2010
).
23.
T.
Glinwong
and
T.
Wongchang
, “
Syngas production from biomass by linear heart gasifier
,”
Energy Procedia
138
,
762
765
(
2017
).
24.
M.
Asadullah
, “
Biomass gasification gas cleaning for downstream applications: A comparative critical review
,”
Renewable Sustainable Energy Rev.
40
,
118
132
(
2014
).
25.
V. S.
Sikarwar
,
M.
Zhao
,
P.
Clough
,
J.
Yao
,
X.
Zhong
,
M. Z.
Memon
,
N.
Shah
,
E. J.
Anthony
, and
P. S.
Fennell
, “
An overview of advances in biomass gasification
,”
Energy Environ. Sci.
9
,
2939
2977
(
2016
).
26.
B. V.
Ayodele
,
S. I.
Mustapa
,
T. A. R. B.
Tuan Abdullah
, and
S. F.
Salleh
, “
A mini-review on hydrogen-rich syngas production by thermo-catalytic and bioconversion of biomass and its environmental implications
,”
Front. Energy Res.
7
,
118
(
2019
).
27.
T. A.
Wierzbicki
,
I. C.
Lee
, and
A. K.
Gupta
, “
Recent advances in catalytic oxidation and reformation of jet fuels
,”
Appl. Energy
165
,
904
918
(
2016
).
28.
M. J.
Gallagher
,
R.
Geiger
,
A.
Polevich
,
A.
Rabinovich
,
A.
Gutsol
, and
A.
Fridman
, “
On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas
,”
Fuel
89
,
1187
1192
(
2010
).
29.
L.
Tartakovsky
and
M.
Sheintuch
, “
Fuel reforming in internal combustion engines
,”
Prog. Energy Combust. Sci.
67
,
88
114
(
2018
).
30.
V.
Yaliwal
,
N.
Banapurmath
,
N.
Gireesh
, and
P.
Tewari
, “
Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature
,”
Renewable Sustainable Energy Rev.
34
,
608
627
(
2014
).
31.
G.
Cau
,
D.
Cocco
, and
F.
Serra
, “
Energy and cost analysis of small-size integrated coal gasification and syngas storage power plants
,”
Energy Convers. Manage.
56
,
121
129
(
2012
).
32.
M.
Mansouri Majoumerd
,
S.
De
,
M.
Assadi
, and
P.
Breuhaus
, “
An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration
,”
Appl. Energy
99
,
280
290
(
2012
).
33.
K.
Gupta
,
A.
Rehman
, and
R.
Sarviya
, “
Bio-fuels for the gas turbine: A review
,”
Renewable Sustainable Energy Rev.
14
,
2946
2955
(
2010
).
34.
E.
Jithin
,
G.
Raghuram
,
T.
Keshavamurthy
,
R. K.
Velamati
,
C.
Prathap
, and
R. J.
Varghese
, “
A review on fundamental combustion characteristics of syngas mixtures and feasibility in combustion devices
,”
Renewable Sustainable Energy Rev.
146
,
111178
(
2021
).
35.
S.
Daniele
,
P.
Jansohn
,
J.
Mantzaras
, and
K.
Boulouchos
, “
Turbulent flame speed for syngas at gas turbine relevant conditions
,”
Proc. Combust. Inst.
33
,
2937
2944
(
2011
).
36.
P.
Venkateswaran Prabhakar
,
A.
Marshall
,
D. H.
Shin
,
D.
Noble
,
J.
Seitzman
, and
T.
Lieuwen
, “
Measurements and analysis of turbulent consumption speeds of H2/CO mixtures
,”
Combust. Flame
158
,
1602
1614
(
2011
).
37.
J.
Wang
,
M.
Zhang
,
Y.
Xie
,
Z.
Huang
,
T.
Kudo
, and
H.
Kobayashi
, “
Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 Mpa
,”
Exp. Thermal Fluid Sci.
50
,
90
96
(
2013
).
38.
S.
Ravi
and
E. L.
Petersen
, “
Laminar flame speed correlations for pure-hydrogen and high-hydrogen content syngas blends with various diluents
,”
Int. J. Hydrogen Energy
37
,
19177
19189
(
2012
).
39.
Y.
Ai
,
Z.
Zhou
,
Z.
Chen
, and
W.
Kong
, “
Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures
,”
Fuel
137
,
339
345
(
2014
).
40.
A. B.
Mansfield
and
M. S.
Wooldridge
, “
The effect of impurities on syngas combustion
,”
Combust. Flame
162
,
2286
2295
(
2015
).
41.
Y.
Zhang
,
W.
Shen
,
H.
Zhang
,
Y.
Wu
, and
J.
Lu
, “
Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames
,”
Fuel
157
,
115
121
(
2015
).
42.
Q.
Zhang
,
D. R.
Noble
, and
T.
Lieuwen
, “
Characterization of fuel composition effects in H2/CO/CH4 mixtures upon lean blowout
,”
J. Eng. Gas Turbines Power
129
,
688
694
(
2007
).
43.
C.
Xu
,
Z.
Wang
,
W.
Weng
,
K.
Wan
,
R.
Whiddon
, and
A.
Wu
, “
Effects of the equivalence ratio and Reynolds number on turbulence and flame front interactions by direct numerical simulation
,”
Energy Fuels
30
,
6727
6737
(
2016
).
44.
C.
Chi
,
G.
Janiga
,
A.
Abdelsamie
,
K.
Zähringer
,
T.
Turányi
, and
D.
Thévenin
, “
DNS study of the optimal chemical markers for heat release in syngas flames
,”
Flow, Turbul. Combust.
98
,
1117
1132
(
2017
).
45.
N.
Babkovskaia
,
N. E. L.
Haugen
, and
A.
Brandenburg
, “
A high-order public domain code for direct numerical simulations of turbulent combustion
,”
J. Comput. Phys.
230
,
1
12
(
2011
).
46.
M. D.
Smoke
and
V.
Giovangigli
, “
Formulation of the premixed and nonpremixed test problems
,” in
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume
, edited by
M. D.
Smoke
(
Springer
,
Berlin, Heidelberg
,
1991
), pp.
1
28
.
47.
M. L.
Frankel
and
G. I.
Sivashinsky
, “
On Quenching of Curved Flames
,”
Combust. Sci. Technol.
40
,
257
268
(
1984
).
48.
P.
Clavin
, “
Dynamic behavior of premixed flame fronts in laminar and turbulent flows
,”
Prog. Energy Combust. Sci.
11
,
1
59
(
1985
).
49.
M.
Tanahashi
,
M.
Fujimura
, and
T.
Miyauchi
, “
Coherent fine-scale eddies in turbulent premixed flames
,”
Proc. Combust. Inst.
28
,
529
535
(
2000
).
50.
D.
Thevénin
,
O.
Gicquel
,
J.
De Charentenay
,
R.
Hilbert
, and
D.
Veynante
, “
Two-versus three-dimensional direct simulations of turbulent methane flame kernels using realistic chemistry
,”
Proc. Combust. Inst.
29
,
2031
2039
(
2002
).
51.
D.
Thévenin
, “
Three-dimensional direct simulations and structure of expanding turbulent methane flames
,”
Proc. Combust. Inst.
30
,
629
637
(
2005
).
52.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
53.
P.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
,
2nd ed.
. (
Oxford Academic
,
2015
).
54.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
578
(
1998
).
55.
J.
Krüger
,
N. E. L.
Haugen
, and
T.
Løvås
, “
Correlation effects between turbulence and the conversion rate of pulverized char particles
,”
Combust. Flame
185
,
160
172
(
2017
).
56.
H.
Zhang
,
K.
Luo
,
N. E. L.
Haugen
,
C.
Mao
, and
J.
Fan
, “
Drag force for a burning particle
,”
Combust. Flame
217
,
188
199
(
2020
).
57.
J.
Savre
,
H.
Carlsson
, and
X. S.
Bai
, “
Tubulent methane/air premixed flame structure at high karlovitz numbers
,”
Flow Turbul. Combust.
90
,
325
341
(
2013
).
58.
H. A.
Uranakara
,
S.
Chaudhuri
,
H. L.
Dave
,
P. G.
Arias
, and
H. G.
Im
, “
A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames
,”
Combust. Flame
163
,
220
240
(
2016
).
59.
C.
Qian
,
C.
Wang
,
J.
Liu
,
A.
Brandenburg
,
N. E. L.
Haugen
, and
M. A.
Liberman
, “
Convergence properties of detonation simulations
,”
Geophys. Astrophys. Fluid Dyn.
114
,
58
76
(
2020
).
60.
J. R.
Aarnes
,
N. E. L.
Haugen
, and
H. I.
Andersson
, “
High-order overset grid method for detecting particle impaction on a cylinder in a cross flow
,”
Int. J. Comput. Fluid Dyn.
33
,
43
58
(
2019
).
61.
J. R.
Aarnes
,
T.
Jin
,
C.
Mao
,
N. E. L.
Haugen
,
K.
Luo
, and
H. I.
Andersson
, “
Treatment of solid objects in the pencil code using an immersed boundary method and overset grids
,”
Geophys. Astrophys. Fluid Dyn.
114
,
35
57
(
2020
).
62.
N. E. L.
Haugen
and
S.
Kragset
, “
Particle impaction on a cylinder in a crossflow as function of stokes and Reynolds numbers
,”
J. Fluid Mech.
661
,
239
261
(
2010
).
63.
C.-C.
Yang
and
M.
Krumholz
, “
Thermal-instability-driven turbulent mixing in galactic disks. I. Effective mixing of metals
,”
Astrophys. J.
758
,
48
(
2012
).
64.
E.
Karchniwy
,
A.
Klimanek
, and
N. E. L.
Haugen
, “
The effect of turbulence on mass transfer rates between inertial polydisperse particles and fluid
,”
J. Fluid Mech.
874
,
1147
1168
(
2019
).
65.
L.
Mattsson
,
A.
Bhatnagar
,
F. A.
Gent
, and
B.
Villarroel
, “
Clustering and dynamic decoupling of dust grains in turbulent molecular clouds
,”
Mon. Not. R. Astron. Soc.
483
,
5623
5641
(
2019
).
66.
A.
Brandenburg
, “
The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence
,”
Astrophys. J.
550
,
824
(
2001
).
67.
H.
Pitsch
, FlameMaster, A C++ computer program for 0D combustion and 1D laminar flame calculations (2007), https://www.itv.rwth-aachen.de/downloads/flamemaster/.
68.
R. J.
Varghese
,
H.
Kolekar
,
V.
Hariharan
, and
S.
Kumar
, “
Effect of CO content on laminar burning velocities of syngas-air premixed flames at elevated temperatures
,”
Fuel
214
,
144
153
(
2018
).
69.
M. P.
Martín
and
G. V.
Candler
, “
Effect of chemical reactions on decaying isotropic turbulence
,”
Phys. Fluids
10
,
1715
1724
(
1998
).
70.
F. A.
Jaberi
,
D.
Livescu
, and
C. K.
Madnia
, “
Characteristics of chemically reacting compressible homogeneous turbulence
,”
Phys. Fluids
12
,
1189
1209
(
2000
).
71.
P. L. K.
Paes
and
Y.
Xuan
, “
Numerical investigation of turbulent kinetic energy dynamics in chemically-reacting homogeneous turbulence
,”
Flow, Turbul. Combust.
101
,
775
794
(
2018
).
72.
J.
O'Brien
,
C. A. Z.
Towery
,
P. E.
Hamlington
,
M.
Ihme
,
A. Y.
Poludnenko
, and
J.
Urzay
, “
The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames
,”
Proc. Combust. Inst.
36
,
1967
1975
(
2017
).
73.
C. A.
Towery
,
A. Y.
Poludnenko
,
J.
Urzay
,
J.
O'Brien
,
M.
Ihme
, and
P. E.
Hamlington
, “
Spectral kinetic energy transfer in turbulent premixed reacting flows
,”
Phys. Rev. E
93
,
053115
(
2016
).
74.
R.
Barlow
,
J.
Frank
,
A.
Karpetis
, and
J.-Y.
Chen
, “
Piloted methane/air jet flames: Transport effects and aspects of scalar structure
,”
Combust. Flame
143
,
433
449
(
2005
).
75.
H.
Wang
,
E. R.
Hawkes
,
J. H.
Chen
,
B.
Zhou
,
Z.
Li
, and
M.
Aldén
, “
Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame - An analysis of flame stretch and flame thickening
,”
J. Fluid Mech.
815
,
511
536
(
2017
).
76.
H. G.
Li
,
P.
Khare
,
H. G.
Sung
, and
V.
Yang
, “
A large-eddy-simulation study of combustion dynamics of bluff-body stabilized flames
,”
Combust. Sci. Technol.
188
(
6
),
924
952
(
2016
).
77.
P.
Khare
,
V.
Yang
,
H.
Meng
,
G. A.
Risha
, and
R. A.
Yetter
, “
Thermal and electrolytic decomposition and ignition of HAN–water solutions
,”
Combust. Sci. Technol.
187
(
7
),
1065
1078
(
2015
).
78.
P.
Khare
,
S.
Wang
, and
V.
Yang
, “
Modeling of finite-size droplets and particles in multiphase flows
,”
Chin. J. Aeronaut.
28
(
4
),
974
982
(
2015
).
79.
H.
Ganti
and
P.
Khare
, “
Data-driven surrogate modeling of multiphase flows using machine learning techniques
,”
Comput. Fluids
211
,
104626
(
2020
).
80.
V.
Notaro
,
P.
Khare
, and
J. G.
Lee
, “
Mixing characteristics of non-Newtonian impinging jets at elevated pressures
,”
Flow, Turbul. Combust.
102
,
355
372
(
2019
).
81.
H.
Ganti
,
P.
Khare
, and
L.
Bravo
, “
Binary collision of CMAS droplets—Part I: Equal-sized droplets
,”
J. Mater. Res.
35
(
17
),
2260
2274
(
2020
).
82.
H.
Ganti
,
P.
Khare
, and
L.
Bravo
, “
Binary collision of CMAS droplets—Part II: Unequal-sized droplets
,”
J. Mater. Res.
35
(
17
),
2275
2287
(
2020
).
83.
J.
Gamertsfelder
,
P.
Khare
, and
L.
Bravo
, “
Investigation of atomization behaviors of liquid monopropellants in pintle injectors
,” in
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
(
ASME
,
2020
), Paper No.
V04AT04A059
.
84.
J. P.
Redding
and
P.
Khare
, “
A computational study on shock induced deformation, fragmentation and vaporization of volatile liquid fuel droplets
,”
Int. J. Heat Mass Transfer
184
,
122345
(
2022
).
85.
M.
Tripathi
,
H.
Ganti
, and
P.
Khare
, “
Interactions between shock waves and liquid droplet clusters: Interfacial physics
,”
J. Fluids Eng.
144
(
10
),
101401
(
2022
).
86.
N.
Jain
,
A.
Le Moine
,
G.
Chaussonnet
,
A.
Flatau
,
L.
Bravo
,
A.
Ghoshal
,
M. J.
Walock
,
M.
Murugan
, and
P.
Khare
, “
A critical review of physical models in high temperature multiphase fluid dynamics: Turbulent transport and particle-wall interactions
,”
Appl. Mech. Rev.
73
(
4
),
040801
(
2021
).
87.
M.
Kamin
and
P.
Khare
, “
Liquid jet in crossflow: Effect of momentum flux ratio on spray and vaporization characteristics
,” in
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels, and Emissions, Phoenix, AZ, 17–21 June 2019,
(
ASME
,
2019
), Paper No.
V04BT04A053
.
88.
M.
Kamin
and
P.
Khare
, “
The effect of Weber number on spray and vaporization characteristics of liquid jets injected in air crossflow
,”
J. Fluids Eng.
144
(
6
),
061108
(
2022
).
89.
L. G.
Bravo
,
N.
Jain
,
P.
Khare
,
M.
Murugan
,
A.
Ghoshal
, and
A.
Flatau
, “
Physical aspects of CMAS particle dynamics and deposition in turboshaft engines
,”
J. Mater. Res.
35
(
17
),
2249
2259
(
2020
).
You do not currently have access to this content.