To achieve good control of an autonomous underwater helicopter (AUH), it is of great significance to study its hydrodynamic quantities. In the present study, hydrodynamic analysis of a disk-shaped AUH is carried out by using three-dimensional (3D) improved delayed detached eddy simulations for the complex flow around an AUH model with main installed structures. The Reynolds numbers based on the incoming flow velocity and diameter of the AUH are in the range of ( 4 8 ) × 10 5. The predicted drag and lift coefficients of the AUH at three different incoming flow velocities (0.35, 0.5, and 0.75 m/s) with five different pitch angles of ( 15 °,  7.5 °, 0 °, 7.5 °, and 15 °) are analyzed. When the pitch angle increases from 0 ° to ± 15 °, the value of C D increases from 0.50 to 0.67. The value of C L decreases from 0.73 to 0.89 with the increasing pitch angle from 15 ° to 15 °. The drag and lift coefficients of the AUH at three different incoming flow velocities with five different pitch angles are analyzed. The vortical flow structures of the three typical pitch angle cases subjected to an incoming flow velocity of 0.5 m/s are presented and discussed. A drag force element decomposition analysis is employed to further reveal the relationship between the wake flow and the hydrodynamic forces. It is found that the inverse ultrashort base line sensor and global positioning system antenna have significant contributions to the drag force. Furthermore, dynamic mode decomposition is applied to study the large-scale wake flow structures behind the AUH. The dominant modes are selected by using a sparsity-promoted algorithm. The modal analysis results reveal the spatial distributions of the large-scale 3D flow structures. It is indicated that vortical structures at different frequencies can be generated due to the installations on the AUH and different pitch angles.

1.
Berger
,
E.
,
Scholz
,
D.
, and
Schumm
,
M.
, “
Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations
,”
J. Fluids Struct.
4
(
3
),
231
257
(
1990
).
2.
Bettle
,
M. C.
,
Gerber
,
A. G.
, and
Watt
,
G. D.
, “
Unsteady analysis of the six DOF motion of a buoyantly rising submarine
,”
Comput. Fluids
38
(
9
),
1833
1849
(
2009
).
3.
Bondaryk
,
J. E.
, “
Bluefin autonomous underwater vehicles: Programs, systems, and acoustic issues
,”
J. Acoust. Soc. Am.
115
(
5
),
2615
2615
(
2004
).
4.
Chang
,
C. C.
, “
Potential flow and forces for incompressible viscous flow
,”
Proc. R. Soc. Ser. A
437
(
1901
),
517
525
(
1992
).
5.
Chen
,
C. W.
,
Jiang
,
Y.
,
Huang
,
H. C.
,
Ji
,
D. X.
,
Sun
,
G. Q.
,
Yu
,
Z.
, and
Chen
,
Y.
, “
Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter
,”
Ocean Eng.
143
,
227
239
(
2017
).
6.
Chen
,
C. W.
,
Wang
,
T.
,
Feng
,
Z.
,
Lu
,
Y.
,
Huang
,
H.
,
Ji
,
D.
, and
Chen
,
Y.
, “
Simulation research on water-entry impact force of an autonomous underwater helicopter
,”
J. Mar. Sci. Technol.
25
(
4
),
1166
1181
(
2020
).
7.
Constantinescu
,
G.
and
Squires
,
K.
, “
Numerical investigations of flow over a sphere in the subcritical and supercritical regimes
,”
Phys. Fluids
16
(
5
),
1449
1466
(
2004
).
8.
Evans
,
J.
and
Nahon
,
M.
, “
Dynamics modeling and performance evaluation of an autonomous underwater vehicle
,”
Ocean Eng.
31
(
14–15
),
1835
1858
(
2004
).
9.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
, “
Development of DDES and IDDES formulations for the k-ω shear stress transport model
,”
Flow, Turbul. Combust.
88
(
3
),
431
449
(
2012
).
10.
Guo
,
J.
,
Lin
,
Y.
,
Lin
,
P.
,
Li
,
H.
,
Huang
,
H.
, and
Chen
,
Y.
, “
Study on hydrodynamic characteristics of the disk-shaped autonomous underwater helicopter over sea-beds
,”
Ocean Eng.
266
,
113132
(
2022
).
11.
Hagen
,
P. E.
,
Storkersen
,
N. J.
, and
Vestgard
,
K.
, “
HUGIN-use of UUV technology in marine applications
,” in
MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (Oceans '99)
(
IEEE
,
1999
), Vol.
2
, pp.
967
972
.
12.
Hemmati
,
A.
,
Wood
,
D. H.
, and
Martinuzzi
,
R. J.
, “
Wake dynamics and surface pressure variations on two-dimensional normal flat plates
,”
AIP Adv.
9
(
4
),
045209
(
2019
).
13.
Jagadeesh
,
P.
,
Murali
,
K.
, and
Idichandy
,
V. G.
, “
Experimental investigation of hydrodynamic force coefficients over AUV hull form
,”
Ocean Eng.
36
(
1
),
113
118
(
2009
).
14.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
15.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
(
2
),
024103
(
2014
).
16.
Krappel
,
T.
,
Kuhlmann
,
H.
,
Kirschner
,
O.
,
Ruprecht
,
A.
, and
Riedelbauch
,
S.
, “
Validation of an IDDES-type turbulence model and application to a Francis pump turbine flow simulation in comparison with experimental results
,”
Int. J. Heat Fluid Flow
55
,
167
179
(
2015
).
17.
Lee
,
J. J.
,
Hsieh
,
C. T.
,
Chang
,
C. C.
, and
Chu
,
C. C.
, “
Vorticity forces on an impulsively started finite plate
,”
J. Fluid Mech.
694
,
464
492
(
2012
).
18.
Lin
,
Y.
,
Huang
,
Y.
,
Zhu
,
H.
,
Huang
,
H.
, and
Chen
,
Y.
, “
Simulation study on the hydrodynamic resistance and stability of a disk-shaped autonomous underwater helicopter
,”
Ocean Eng.
219
,
108385
(
2021
).
19.
Lin
,
Y.
,
Guo
,
J.
,
Li
,
H.
,
Wang
,
Z.
,
Chen
,
Y.
, and
Huang
,
H.
, “
Improvement of hydrodynamic performance of the disk-shaped autonomous underwater helicopter by local shape modification
,”
Ocean Eng.
260
,
112056
(
2022a
).
20.
Lin
,
Y.
,
Guo
,
J.
,
Li
,
H.
,
Zhu
,
H.
,
Huang
,
H.
, and
Chen
,
Y.
, “
Study on the motion stability of the autonomous underwater helicopter
,”
J. Mar. Sci. Eng.
10
(
1
),
60
(
2022b
).
21.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
Ten years of industrial experience with the SST turbulence model
,”
Turbul., Heat Mass Transfer
4
(
1
),
625
632
(
2003
).
22.
Menon
,
K.
and
Mittal
,
R.
, “
On the initiation and sustenance of flow-induced vibration of cylinders: Insights from force partitioning
,”
J. Fluid Mech.
907
,
A37
(
2021
).
23.
Neves
,
G.
,
Ruiz
,
M.
,
Fontinele
,
J.
, and
Oliveira
,
L.
, “
Rotated object detection with forward-looking sonar in underwater applications
,”
Expert Syst. Appl.
140
,
112870
(
2020
).
24.
Ohmichi
,
Y.
, “
Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition
,”
AIP Adv.
7
(
7
),
075318
(
2017
).
25.
Ohmichi
,
Y.
,
Kobayashi
,
K.
, and
Kanazaki
,
M.
, “
Numerical investigation of wake structures of an atmospheric entry capsule by modal analysis
,”
Phys. Fluids
31
(
7
),
074105
(
2019
).
26.
Ong
,
M. C.
and
Yin
,
G.
, “
On the three-dimensional wake flow behind a normal flat plate
,”
Phys. Fluids
34
(
1
),
013603
(
2022
).
27.
Pan
,
C.
,
Xue
,
D.
, and
Wang
,
J.
, “
On the accuracy of dynamic mode decomposition in estimating instability of wave packet
,”
Exp. Fluids
56
,
164
(
2015
).
28.
Rodríguez
,
I.
,
María
,
I.
,
Barba
,
O. L.
,
Pol
,
R. B.
,
Llena
,
A. O.
, and
Pérez Segarra
,
C. D.
, “
Direct numerical simulation of turbulent wakes: flow past a sphere at Re= 5000
,” in
Fifth European Conference on Computational Fluid Dynamics
(
ECCOMAS CFD
,
2010
), pp.
04134
.
29.
Rodriguez
,
I.
,
Borell
,
R.
,
Lehmkuhl
,
O.
,
Segarra
,
C. D. P.
, and
Oliva
,
A.
, “
Direct numerical simulation of the flow over a sphere at Re = 3700
,”
J. Fluid Mech.
679
,
263
287
(
2011
).
30.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
, “
A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
,”
Int. J. Heat Fluid Flow
29
(
6
),
1638
1649
(
2008
).
31.
Schmid
,
P. J.
, “
Application of the dynamic mode decomposition to experimental data
,”
Exp. Fluids
50
,
1123
1130
(
2011
).
32.
Schmid
,
P. J.
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
33.
Sherman
,
J.
,
Davis
,
R. E.
,
Owens
,
W. B.
, and
Valdes
,
J.
, “
The autonomous underwater glider ‘Spray
,’”
IEEE J. Oceanic Eng.
26
(
4
),
437
446
(
2001
).
34.
Stommel
,
H.
, “
The slocum mission
,”
Oceanography
2
(
1
),
22
25
(
1989
).
35.
Strelets
,
M.
, “
Detached eddy simulation of massively separated flows
,” in
39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-879
(
2001
).
36.
Tanakitkorn
,
K.
,
Wilson
,
P. A.
,
Turnock
,
S. R.
, and
Phillips
,
A. B.
, “
Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification
,”
Mechatronics
41
,
67
81
(
2017
).
37.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
et al, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
(
12
),
4013
4041
(
2017
).
38.
Tian
,
X.
,
Ong
,
M. C.
,
Yang
,
J.
, and
Myrhaug
,
D.
, “
Large-eddy simulation of the flow normal to a flat plate including corner effects at a high Reynolds number
,”
J. Fluids Struct.
49
,
149
169
(
2014
).
39.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P. R.
,
2002
. “
Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows
,” in
Advances in LES of Complex Flows: Proceedings of the Euromech Colloquium
(
Springer Netherlands
,
2002
), Vol.
412
, pp.
239
254
.
40.
Uchida
,
S.
,
Kuwahara
,
H.
,
Tsuboi
,
J.
,
Akatsuka
,
T.
,
Nakata
,
Y.
, and
Kanoh
,
Y.
, “
On the aerodynamic properties of the oblate spheriod
,”
Aeronaut. Space Sci. Jpn.
29
(
330
),
343
349
(
1981
).
41.
Wang
,
Z.
,
Liu
,
X.
,
Huang
,
H.
, and
Chen
,
Y.
, “
Development of an autonomous underwater helicopter with high maneuverability
,”
Appl. Sci.
9
(
19
),
4072
(
2019
).
42.
Welch
,
P.
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
73
(
1967
).
43.
Xiang
,
X.
,
Yu
,
C.
,
Niu
,
Z.
, and
Zhang
,
Q.
, “
Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance
,”
Sensors
16
(
8
),
1335
(
2016
).
44.
Yin
,
G.
and
Ong
,
M. C.
, “
Numerical analysis on flow around a wall-mounted square structure using Dynamic Mode Decomposition
,”
Ocean Eng.
223
,
108647
(
2021
).
45.
Zhang
,
K.
,
Hayostek
,
S.
,
Amitay
,
M.
,
He
,
W.
,
Theofilis
,
V.
, and
Taira
,
K.
, “
On the formation of three-dimensional separated flows over wings under tip effects
,”
J. Fluid Mech.
895
,
A9
(
2020
).
You do not currently have access to this content.