In the present work, the use of passive heat transfer enhancement technique through surface alteration was explored. The enhancement was achieved through internal conduit surface micro-grooving using a new apparatus that was developed by modifying a magnetic abrasive finishing technique. A new surface profile was created and later verified using optical and laser profiler measurements. The new profile was numerically investigated to compare the heat transfer and hydrodynamic performance against other profiles that have been studied in the literature. It was found from the results that the new profile shows much higher heat transfer improvement and comparable pressure loss to the previously investigated profiles (i.e., square, rectangular, trapezoidal, and circular). Overall, the new groove geometry provides the highest performance followed by the circular, triangular, curvy, square, and rectangular grooves. Also, the results indicate that designs with a smooth profile performs better than those with sharp edges, owing to the elimination of stationary fluid spots within the grooves. The effectiveness between the profiles was compared based on the level of heat transfer enhancement against the flow penalty. Experimental validation was further conducted for the experimentally generated groove. The results revealed that a relatively small surface temperature drop was obtained, corresponding to a slight improvement in heat transfer. This confirms the results generated by the simulation that groove size plays a major role in attaining significant improvement in heat transfer.

1.
N.
Sharma
,
A.
Tariq
, and
M.
Mishra
, “
Detailed heat transfer and fluid flow investigation in a rectangular duct with truncated prismatic ribs
,”
Exp. Therm. Fluid Sci.
96
,
383
396
(
2018
).
2.
K.
Deepika
and
R. M.
Sarviya
, “
Application based review on enhancement of heat transfer in heat exchangers tubes using inserts
,”
Mater. Today
44
,
2362
2365
(
2021
).
3.
Y. A.
Çengel
and
A. J.
Ghajar
,
Heat and Mass Transfer: Fundamentals and Applications
(
McGraw-Hill Education
,
2020
).
4.
H.
Li
,
Y.
Wang
,
Y.
Han
,
W.
Li
,
L.
Yang
,
J.
Guo
,
Y.
Liu
,
J.
Zhang
,
M.
Zhang
, and
F.
Jiang
, “
A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger
,”
Powder Technol.
397
,
117037
(
2022
).
5.
F.
Hekmatipour
and
M.
Jalali
, “
Heat transfer and presser drop of copper oxide–thermal oil in upward single-phase flow in inclined microfin tube under constant wall temperature
,”
J. Therm. Anal. Calorim.
139
,
2203
2214
(
2020
).
6.
P.
Samruaisin
,
K.
Wongcharee
,
V.
Chuwattanakul
, and
S.
Eiamsa-ard
, “
Silver–water nanofluid flow and convective heat transfer in a microfin tube equipped with loose-fit twisted tapes
,”
J. Therm. Anal. Calorim.
140
,
2541
2554
(
2020
).
7.
B.
Kristiawan
,
A. I.
Rifa'i
,
K.
Enoki
,
A. T.
Wijayanta
, and
T.
Miyazaki
, “
Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube
,”
Powder Technol.
376
,
254
262
(
2020
).
8.
Y.
Li
,
Z.
Qian
, and
Q.
Wang
, “
Numerical analysis on thermohydraulic performance of the tube inserted with rectangular winglet vortex generators
,”
Energies
15
(
2022
),
179
(
2021
).
9.
P.
Promvonge
and
S.
Skullong
, “
Thermohydraulic performance and entropy generation in heat exchanger tube with louvered winglet tapes
,”
Int. J. Therm. Sci.
181
,
107733
(
2022
).
10.
V. R.
Sharma
and
M.
MS
, “
Enhanced thermal performance of tubular heat exchanger using triangular wing vortex generator
,”
Cogent Eng.
9
,
2050021
(
2022
).
11.
A.
Hojati
,
M. A.
Akhavan-Behabadi
,
P.
Hanafizadeh
, and
M. M.
Ahmadpour
, “
Effect of geometrical parameters on entropy generation during R134a boiling flow inside unique internally grooved tubes: Experimental approach
,”
Int. J. Therm. Sci.
163
,
106845
(
2021
).
12.
S. A. E. S.
Ahmed
,
E. Z.
Ibrahim
,
M. M.
Ibrahim
,
M. A.
Essa
,
M. A.
Abdelatief
, and
M. N.
El-Sayed
, “
Heat transfer performance evaluation in circular tubes via internal repeated ribs with entropy and exergy analysis
,”
Appl. Therm. Eng.
144
,
1056
1070
(
2018
).
13.
H.
Hajabdollahi
,
M.
Salarmofrad
,
S.
Shamsi
, and
M.
Rezaeian
, “
Numerical study of heat transfer and friction factor in a tube with groove and rib on the wall
,”
Heat Transfer
49
,
1214
1236
(
2020
).
14.
T.
Stolarski
,
Y.
Nakasone
, and
S.
Yoshimoto
,
Engineering Analysis with ANSYS Software
(
Butterworth-Heinemann
,
2018
).
15.
T. S.
Mogaji
,
A. O.
Olapojoye
,
E. T.
Idowu
, and
B.
Saleh
, “
CFD study of heat transfer augmentation and fluid flow characteristics of turbulent flow inside helically grooved tubes
,”
J. Braz. Soc. Mech. Sci. Eng.
44
,
90
(
2022
).
16.
S.
Eiamsa-ard
and
K.
Wongcharee
, “
Convective heat transfer enhancement using Ag-water nanofluid in a micro-fin tube combined with non-uniform twisted tape
,”
Int. J. Mech. Sci.
146–147
,
337
354
(
2018
).
17.
G. J.
Zdaniuk
,
L. M.
Chamra
, and
P. J.
Mago
, “
Experimental determination of heat transfer and friction in helically-finned tubes
,”
Exp. Therm. Fluid Sci.
32
,
761
775
(
2008
).
18.
R. L.
Webb
, “
Single-phase heat transfer, friction, and fouling characteristics of three-dimensional cone roughness in tube flow
,”
Int. J. Heat Mass Transfer
52
,
2624
2631
(
2009
).
19.
P. K.
Nagarajan
,
Y.
Mukkamala
, and
P.
Sivashanmugam
, “
Studies on heat transfer and friction factor characteristics of turbulent flow through a micro-finned tube fitted with left–right inserts
,”
Appl. Therm. Eng.
30
,
1666
1672
(
2010
).
20.
K.
Aroonrat
,
C.
Jumpholkul
,
R.
Leelaprachakul
,
A. S.
Dalkilic
,
O.
Mahian
, and
S.
Wongwises
, “
Heat transfer and single-phase flow in internally grooved tubes
,”
Int. Commun. Heat Mass Transfer
42
,
62
68
(
2013
).
21.
E. P.
Bandarra Filho
and
J. M. S.
Jabardo
, “
Experimental study of the thermal hydraulic performance of sub-cooled refrigerants flowing in smooth, micro-fin and herringbone tubes
,”
Appl. Therm. Eng.
62
,
461
469
(
2014
).
22.
K.
Bilen
,
M.
Cetin
,
H.
Gul
, and
T.
Balta
, “
The investigation of groove geometry effect on heat transfer for internally grooved tubes
,”
Appl. Therm. Eng.
29
,
753
761
(
2009
).
23.
A.
Zeeshan
,
M.
Hassan
,
R.
Ellahi
, and
M.
Nawaz
, “
Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation
,”
Proc. Inst. Mech. Eng., Part E
231
,
871
879
(
2017
).
24.
X.
Zhang
,
J.
Zhang
,
H.
Ji
, and
D.
Zhao
, “
Heat transfer enhancement and pressure drop performance for R417A flow boiling in internally grooved tubes
,”
Energy
86
,
446
454
(
2015
).
25.
P.
Selvaraj
,
J.
Sarangan
, and
S.
Suresh
, “
Computational fluid dynamics analysis on heat transfer and friction factor characteristics of a turbulent flow for internally grooved tubes
,”
Therm. Sci.
17
,
1125
1137
(
2013
).
26.
R.
Naveenkumar
,
N.
Karthikeyan
,
S. N.
Gopan
,
S.
Rajaram
, and
M.
Ravichandran
, “
Analysis of heat transfer in grooved plain carbon steel tube for solar applications
,”
Mater. Today
33
,
4219
4223
(
2020
).
27.
A. A.
Ramadhan
,
Y. T.
Al Anii
, and
A. J.
Shareef
, “
Groove geometry effects on turbulent heat transfer and fluid flow
,”
Heat Mass Transfer
49
,
185
195
(
2013
).
28.
L.
Wang
,
L.
Deng
,
C.
Ji
,
E.
Liang
,
C.
Wang
, and
D.
Che
, “
Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces
,”
Appl. Energy
174
,
25
36
(
2016
).
29.
D.
Graham
,
J. C.
Chato
, and
T. A.
Newell
, “
Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube
,”
Int. J. Heat Mass Transfer
42
,
1935
1944
(
1999
).
30.
M.
Goto
,
N.
Inoue
, and
R.
Yonemoto
, “
Condensation heat transfer of R410A inside internally grooved horizontal tubes
,”
Int. J. Refrig.
26
,
410
416
(
2003
).
31.
A.
Miyara
,
Y.
Otsubo
,
S.
Ohtsuka
, and
Y.
Mizuta
, “
Effects of fin shape on condensation in herringbone microfin tubes
,”
Int. J. Refrig.
26
,
417
424
(
2003
).
32.
T.
Kuboki
,
M.
Ishikawa
,
S.
Kajikawa
, and
M.
Murata
, “
An extrusion method of tube with spiral inner fins by utilizing generation of spiral outer fins/grooves
,”
CIRP Ann.
67
,
305
308
(
2018
).
33.
G. G. B.
Zaffaroni
, “
Developing high performance aluminium alloy tubes for heat exchange applications
,” Doctoral thesis,
Technical University of Denmark
,
2020
.
34.
S. S.
Kumaran
and
A. D.
Das
, “
An examination of seamless ferritic tube and austenitic alloy tube plate joining by friction welding process
,”
Mater. Today
5
,
8539
8546
(
2018
).
35.
S.
Guo
,
Z.
Wu
,
W.
Li
,
D.
Kukulka
,
B.
Sundén
,
X.
Zhou
,
J.
Wei
, and
T.
Simon
, “
Condensation and evaporation heat transfer characteristics in horizontal smooth, herringbone and enhanced surface EHT tubes
,”
Int. J. Heat Mass Transfer
85
,
281
291
(
2015
).
36.
M.
Jadhav
,
R.
Awari
,
D.
Bibe
,
A.
Bramhane
, and
M.
Mokashi
, “
Review on enhancement of heat transfer by active method
,”
Int. J. Curr. Eng. Technol.
6
,
221
225
(
2016
).
37.
B.
M'hamed
,
N. A. C.
Sidik
,
M.
Yazid
,
R.
Mamat
,
G.
Najafi
, and
G. H. R.
Kefayati
, “
A review on why researchers apply external magnetic field on nanofluids
,”
Int. Commun. Heat Mass Transfer
78
,
60
67
(
2016
).
38.
W. I.
Liu
,
J.
Alsarraf
,
A.
Shahsavar
,
M.
Rostamzadeh
,
M.
Afrand
, and
T. K.
Nguyen
, “
Impact of oscillating magnetic field on the thermal-conductivity of water–Fe3O4 and water–Fe3O4/CNT ferro-fluids: Experimental study
,”
J. Magn. Magn. Mater.
484
,
258
265
(
2019
).
39.
P.
Deshpande
,
A. R.
Inamdar
, and
S. R.
Gadekar
, “
Review on advanced finishing processes (AFPs)
,” in
Proceeding of 4th International Conference on Recent Innovations in Science Engineering and Management
,
India International Centre
,
New Delhi, India
,
2016
.
40.
M. G.
Patil
,
K.
Chandra
, and
P. S.
Misra
, “
Magnetic abrasive finishing–A Review
,”
Adv. Mater. Res.
418
,
1577
1581
(
2012
).
41.
M. M.
Ridha
,
Z.
Yanhua
, and
S.
Hitoshi
, “
Development of a new internal finishing of tube by magnetic abrasive finishing process combined with electrochemical machining
,”
Int. J. Mech. Eng. Appl.
3
,
22
29
(
2015
).
42.
M. R.
Muhamad
,
M. H.
Rony
,
M. N. M.
Zubir
,
F. A.
Ibrahim
, and
M. M. A.
Halim
, “
Pipe internal grooving using closed magnetic field system: A novel method
,”
Mater. Sci. Eng. Technol.
(published online 2022).
43.
S. J.
Kline
, “
Describing uncertainties in single-sample experiments
,”
Mech. Eng.
75
,
3
8
(
1963
).
44.
T. F.
Irvine
, Jr., “
A generalized Blasius equation for power law fluids
,”
Chem. Eng. Commun.
65
,
39
47
(
1988
).
45.
B. R.
Munson
,
T. H.
Okiishi
,
W. W.
Huebsch
, and
A. P.
Rothmayer
,
Fluid Mechanics
(
Wiley
,
Singapore
,
2013
).
46.
R.
Sadri
,
A. R.
Mallah
,
M.
Hosseini
,
G.
Ahmadi
,
S. N.
Kazi
,
A.
Dabbagh
,
C. H.
Yeong
,
R.
Ahmad
, and
N. A.
Yaakup
, “
CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data
,”
J. Mol. Liq.
269
,
152
159
(
2018
).
47.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
48.
D.
Pitts
and
L. E.
Sissom
,
Schaum's Outline of Heat Transfer
(
McGraw Hill Professional
,
1998
).
49.
H.
Blasius
,
Das Aehnlichkeitsgesetz Bei Reibungsvorgängen in Flüssigkeiten
(
Springer
,
1913
).
50.
E.
Sanvicente
,
S.
Giroux-Julien
,
C.
Ménézo
, and
H.
Bouia
, “
Transitional natural convection flow and heat transfer in an open channel
,”
Int. J. Therm. Sci.
63
,
87
104
(
2013
).
51.
C.
Maradiya
,
J.
Vadher
, and
R.
Agarwal
, “
The heat transfer enhancement techniques and their thermal performance factor
,”
Beni-Suef Univ. J. Basic Appl. Sci.
7
,
1
21
(
2018
).
52.
M. N. M.
Zubir
,
M. R.
Muhamad
,
A.
Amiri
,
A.
Badarudin
,
S. N.
Kazi
,
C. S.
Oon
,
H. T.
Abdullah
,
S.
Gharehkhani
, and
H.
Yarmand
, “
Heat transfer performance of closed conduit turbulent flow: Constant mean velocity and temperature do matter!
,”
J. Taiwan Inst. Chem. Eng.
64
,
285
298
(
2016
).
53.
W.
Williams
,
J.
Buongiorno
, and
L.-W.
Hu
, “
Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes
,”
J. Heat Transfer
130
,
042412
(
2008
).
54.
J.
Taylor
,
Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements
(
University Science Books
,
1997
).
55.
M.
Ito
and
H.
Kimura
, “
Boiling heat transfer and pressure drop in internal spiral-grooved tubes
,”
Bull. JSME
22
,
1251
1257
(
1979
).
You do not currently have access to this content.