The paper applies a wavelet filtering method based on the recursive denoising algorithm to airfoil noise in low-Mach number flows. The pressure field around the airfoil is decomposed into coherent contributions corresponding to denoised pressure and incoherent pressure corresponding to background noise. The pressure data are obtained from Large-Eddy Simulations. Both the flow and acoustic solvers are validated against experimental data at a zero angle of attack, Reynolds numbers, Re = 3.2 × 10 5 and 4 × 10 5, and Mach numbers, M = 0.093 and 0.058, respectively. The convergence trend and statistical nature of the wavelet algorithm are analyzed. Additionally, the decomposed pressures are examined by comparing the wavelet-based decomposition with the traditional wavenumber–frequency decomposition, and spectral analyses are conducted on the decomposed pressures. The results show that the denoised pressure represents physical phenomena associated with hydrodynamic wavy structures moving along the wall and sound propagation generated near the tripping region and the trailing edge. On the other hand, the incoherent pressure or background noise exhibits a small and constant amplitude closely adhering to the Gaussian distribution. Dynamic mode decomposition modes reveal that this background noise is prominent around the tripping and trailing-edge regions where flow perturbations are significant, but it either barely propagates to the far field or dissipates quickly. The far-field acoustic spectrum is predominantly influenced by the physical or denoised component. However, a cautious interpretation is necessary in the high-frequency range, where background noise still contributes to the far-field noise. The paper explores the potential applications of the wavelet algorithm in identifying and removing background noise.

1.
W.
Johnson
and
C.
Silva
, “
NASA concept vehicles and the engineering of advanced air mobility aircraft
,”
Aeronaut. J.
126
,
59
91
(
2022
).
2.
Z.
Jia
and
S.
Lee
, “
Computational study on noise of urban air mobility quadrotor aircraft
,”
J. Am. Helicopter Soc.
67
,
1
15
(
2022
).
3.
Z.
Jia
and
S.
Lee
, “
High-fidelity computational analysis on the noise of a side-by-side hybrid VTOL aircraft
,”
J. Am. Helicopter Soc.
67
,
022005
(
2022
).
4.
J.
Holden
and
N.
Goel
, “
Fast-forwarding to a future of on-demand urban air transportation
,” in
Uber Elevate
,
2016
.
5.
T. F.
Brooks
,
D. S.
Pope
, and
M. A.
Marcolini
, “
Airfoil self-noise and prediction
,”
Technical Report No. NASA RP 1218
(
NASA
,
1989
).
6.
R. K.
Amiet
, “
Noise due to turbulent flow past a trailing edge
,”
J. Sound Vib.
47
,
387
393
(
1976
).
7.
R. D.
Sandberg
,
N. D.
Sandham
, and
P. F.
Joseph
, “
Direct numerical simulations of trailing-edge noise generated by boundary-layer instabilities
,”
J. Sound Vib.
304
,
677
690
(
2007
).
8.
R. D.
Sandberg
and
L. E.
Jones
, “
Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations
,”
J. Sound Vib.
330
,
3818
3831
(
2011
).
9.
R. D.
Sandberg
and
N. D.
Sandham
, “
Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation
,”
J. Fluid Mech.
596
,
353
385
(
2008
).
10.
S.
Lee
,
L.
Ayton
,
F.
Bertagnolio
,
S.
Moreau
,
T.
Chong
, and
P.
Joseph
, “
Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application
,”
Prog. Aerosp. Sci.
126
,
100737
(
2021
).
11.
S.
Li
and
S.
Lee
, “
Prediction of urban air mobility multi-rotor VTOL broadband noise using UCD-quietfly
,”
J. Am. Helicopter Soc.
66
,
032004
(
2021
).
12.
S.
Li
and
S.
Lee
, “
Acoustic analysis and sound quality assessment of a quiet helicopter for air taxi operations
,”
J. Am. Helicopter Soc.
67
,
032001
(
2022
).
13.
M.
Wang
and
P.
Moin
, “
Computation of trailing-edge flow and noise using large-eddy simulation
,”
AIAA J.
38
,
2201
2209
(
2000
).
14.
W. R.
Wolf
,
J. L.
Azevedo
, and
S. K.
Lele
, “
Convective effects and the role of quadrupole sources for aerofoil aeroacoustics
,”
J. Fluid Mech.
708
,
502
538
(
2012
).
15.
A.
Bodling
and
A.
Sharma
, “
Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil
,”
J. Sound Vib.
453
,
314
327
(
2019
).
16.
J. M.
Turner
and
J. W.
Kim
, “
Quadrupole noise generated from a low-speed aerofoil in near- and full-stall conditions
,”
J. Fluid Mech.
936
,
A34
(
2022
).
17.
S.
Moreau
, “
The third golden age of aeroacoustics
,”
Phys. Fluids
34
,
031301
(
2022
).
18.
R. D.
Sandberg
,
L. E.
Jones
,
N. D.
Sandham
, and
P. F.
Joseph
, “
Direct numerical simulations of tonal noise generated by laminar flow past airfoils
,”
J. Sound Vib.
320
,
838
858
(
2009
).
19.
L. E.
Jones
,
R. D.
Sandberg
, and
N. D.
Sandham
, “
Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence
,”
J. Fluid Mech.
602
,
175
207
(
2008
).
20.
D. R.
Chapman
, “
Computational aerodynamics development and outlook
,”
AIAA J.
17
,
1293
1313
(
1979
).
21.
D. R.
Chapman
, “
Large Eddy Simulations: How to evaluate resolution
,”
Int. J. Heat Fluid Flow
30
,
1016
1025
(
2009
).
22.
D.
Brouzet
,
Investigation of Direct Combustion Noise in Turbulent Premixed Jet Flames Using Direct Numerical Simulations
(
The University of Melbourne
,
2020
).
23.
K. S.
Brentner
and
F.
Farassat
, “
Modelling aerodynamically generated sound of helicopter rotors
,”
Prog. Aerosp. Sci.
39
,
83
120
(
2003
).
24.
M.
Farge
,
K.
Schneider
,
G.
Pellegrino
,
A. A.
Wray
, and
R. S.
Rogallo
, “
Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions
,”
Phys. Fluids
15
,
2886
2896
(
2003
).
25.
K.
Schneider
,
M.
Farge
,
G.
Pellegrino
, and
M. M.
Rogers
, “
Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets
,”
J. Fluid Mech.
534
,
39
66
(
2005
).
26.
K.
Schneider
,
J.
Ziuber
,
M.
Farge
, and
A.
Azzalini
, “
Coherent vortex extraction and simulation of 2D isotropic turbulence
,”
J. Turbul.
7
,
N44
(
2006
).
27.
N.
Okamoto
,
K.
Yoshimatsu
,
K.
Schneider
,
M.
Farge
, and
Y.
Kaneda
, “
Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint
,”
Phys. Fluids
19
,
115109
(
2007
).
28.
J.
Ruppert-Felsot
,
M.
Farge
, and
P.
Petitjeans
, “
Wavelet tools to study intermittency: Application to vortex bursting
,”
J. Fluid Mech.
636
,
427
453
(
2009
).
29.
M.
Bassenne
,
J.
Urzay
,
K.
Schneider
, and
P.
Moin
, “
Extraction of coherent clusters and grid adaptation in particle-laden turbulence using wavelet filters
,”
Phys. Rev. Fluids
2
,
054301
(
2017
).
30.
K.
Schneider
and
O. V.
Vasilyev
, “
Wavelet methods in computational fluid dynamics. annual review of fluid mechanics
,”
Annu. Rev. Fluid Mech.
42
,
473
503
(
2010
).
31.
M.
Farge
,
K.
Schneider
, and
N.
Kevlahan
, “
Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis
,”
Phys. Fluids
11
,
2187
2201
(
1999
).
32.
M.
Farge
,
G.
Pellegrino
, and
K.
Schneider
, “
Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets
,”
Phys. Rev. Lett.
87
,
054501
(
2001
).
33.
M.
Schlegel
,
B. R.
Noack
,
P.
Comte
,
D.
Kolomenskiy
,
K.
Schneider
,
M.
Farge
,
D. B.
Luchtenburg
,
J. E.
Scouten
, and
G.
Tadmor
, “
Reduced-order modelling of turbulent jets for noise control
,”
Numer. Simul. Turbul. Flows Noise Gener.
2009
,
3
27
.
34.
R.
Nguyen van Yen
,
M.
Farge
, and
K.
Schneider
, “
Scale-wise coherent vorticity extraction for conditional statistical modeling of homogeneous isotropic two-dimensional turbulence
,”
Physica D
241
,
186
201
(
2012
).
35.
M.
Mancinelli
,
T.
Pagliaroli
,
A.
Di Marco
,
R.
Camussi
, and
T.
Castelain
, “
Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet
,”
J. Fluid Mech.
813
,
716
749
(
2017
).
36.
A.
Hajczak
,
L.
Sanders
,
F.
Vuillot
, and
P.
Druault
, “
Wavelet-based separation methods assessment on the near pressure field of a landing gear subcomponent
,” AIAA Paper No. AIAA 2019-2482,
2019
.
37.
R.
Camussi
and
S.
Meloni
, “
On the application of wavelet transform in jet aeroacoustics
,”
Fluids
6
,
299
(
2021
).
38.
R.
Camussi
,
S.
Meloni
, and
C.
Bogey
, “
On the influence of the nozzle exhaust initial conditions on the near field acoustic pressure
,”
Acta Acust.
6
,
57
(
2022
).
39.
R. E. A.
Arndt
,
D. F.
Long
, and
M. N.
Glauser
, “
The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet
,”
J. Fluid Mech.
340
,
1
33
(
1997
).
40.
E.
Manoha
,
J.
Bulté
, and
B.
Caruelle
, “
LAGOON: An experimental database for the validation of CFD/CAA methods for landing gear noise prediction
,” AIAA Paper No. AIAA 2008-2816,
2008
.
41.
A.
Azzalini
,
M.
Farge
, and
K.
Schneider
, “
Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold
,”
Appl. Comput. Harmon. Anal.
18
,
177
185
(
2005
).
42.
D. L.
Donoho
and
J. M.
Johnstone
, “
Ideal spatial adaptation by wavelet shrinkage
,”
Biometrika
81
,
425
455
(
1994
).
43.
N. J.
Georgiadis
,
D. P.
Rizzetta
, and
C.
Fureby
, “
Large-eddy simulation: Current capabilities, recommended practices, and future research
,”
AIAA J.
48
,
1772
1784
(
2010
).
44.
D. H.
Kang
and
S.
Lee
, “
Application of wavelet analysis to trailing-edge noise
,” AIAA Paper No. AIAA 2022-2891,
2022
.
45.
D. H.
Kang
and
S.
Lee
, “
Assessment of wavelet-based separation algorithms on turbulent boundary layer trailing-edge noise prediction
,” ICCFD Paper No. 2022-1203,
2022
.
46.
S.
Lee
,
D. H.
Kang
,
D.
Brouzet
, and
S. K.
Lele
,
Airfoil Trailing-Edge Noise Source Identification Using Large-Eddy Simulation and Wavelet Transform
(
CTR Summer Program
,
2022
).
47.
D. H.
Kang
and
S.
Lee
, “
On the effect of boundary-layer tripping for trailing-edge noise predictions
,” AIAA Paper No. AIAA 2023-0972,
2023
.
48.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids
3
,
2746
2757
(
1991
).
49.
U.
Piomelli
, “
Large-eddy simulation-present state and future perspectives
,” AIAA Paper No. AIAA 1998-534,
1998
.
50.
J.
Blazek
,
Computational Fluid Dynamics: Principles and Applications
(
Butterworth-Heinemann
,
2015
).
51.
A. J. A.
Favre
, “
Equations des gaz turbulents compressibles
,”
J. Mec.
4
,
1
(
1965
).
52.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow Turbul. Combust.
62
,
183
200
(
1999
).
53.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
54.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
55.
F.
Farassat
and
G. P.
Succi
, “
A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations
,”
J. Sound Vib.
71
,
399
419
(
1980
).
56.
K. S.
Brentner
,
G. A.
Bres
,
G.
Perez
, and
H. E.
Jones
, “
Maneuvering rotorcraft noise prediction: A new code for a new problem
,” in
American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialist Meeting
,
2002
.
57.
S.
Lee
,
K.
Brentner
,
F.
Farassat
, and
P.
Morris
, “
Analytic formulation and numerical implementation of an acoustic pressure gradient prediction
,”
J. Sound Vib.
319
,
1200
1221
(
2009
).
58.
F.
Farassat
, “
The prediction of helicopter discrete frequency noise
,” in
American Helicopter Society
(
1983
), pp.
497
507
.
59.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generated by turbulence and surface in arbitrary motion
,”
Philos. Trans. R. Soc., A
264
,
321
342
(
1969
).
60.
A.
Grossmann
and
J.
Morlet
, “
Decomposition of Hardy functions into square integrable wavelets of constant shape
,”
SIAM J. Math. Anal.
15
,
723
736
(
1984
).
61.
C.
Meneveau
, “
Analysis of turbulence in the orthonormal wavelet representation
,”
J. Fluid Mech.
232
,
469
520
(
1991
).
62.
R.
Camussi
and
G.
Guj
, “
Orthonormal wavelet decomposition of turbulent flows: Intermittency and coherent structures
,”
J. Fluid Mech.
348
,
177
199
(
1997
).
63.
S.
Grizzi
and
R.
Camussi
, “
Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet
,”
J. Fluid Mech.
698
,
93
124
(
2012
).
64.
J. N.
Kutz
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. L.
Proctor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2016
).
65.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
66.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
67.
A.
Garcia-Sagrado
and
T.
Hynes
, “
Wall pressure sources near an airfoil trailing edge under turbulent boundary layers
,”
J. Fluids Struct.
30
,
3
34
(
2012
).
68.
A.
Hatman
and
T.
Wang
, “
A prediction model for separated-flow transition
,” in
ASME International Gas Turbine and Aeroengine Congress and Exhibition
,
1998
.
69.
F. M.
White
and
J.
Majdalani
,
Viscous Fluid Flow
(
McGraw-Hill
,
New York, NY
,
2006
).
70.
C.
Kato
,
A.
Iida
,
Y.
Takano
,
H.
Fujita
, and
M.
Ikegawa
, “
Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake
,” AIAA Paper No. AIAA 1993-145,
1993
.
71.
W.
Arias Ramírez
and
W. R.
Wolf
, “
Effects of trailing edge bluntness on airfoil tonal noise at low Reynolds numbers
,”
J. Braz. Soc. Mech. Sci. Eng.
38
,
2369
2380
(
2016
).
72.
A.
Le
,
V.
Roytershteyn
,
H.
Karimabadi
,
A.
Stanier
,
L.
Chacon
, and
K.
Schneider
, “
Wavelet methods for studying the onset of strong plasma turbulence
,”
Phys. Plasmas
25
,
122310
(
2018
).
73.
S.
Shubham
,
R. D.
Sandberg
,
S.
Moreau
, and
H.
Wu
, “
Surface pressure spectrum variation with Mach number on a CD airfoil
,”
J. Sound Vib.
526
,
116762
(
2022
).
74.
J. M.
Lilly
and
S. C.
Olhede
, “
Higher-order properties of analytic wavelets
,”
IEEE Trans. Signal Process.
57
,
146
160
(
2009
).
75.
J. M.
Lilly
and
S. C.
Olhede
, “
On the analytic wavelet transform
,”
IEEE Trans. Inf. Theory
56
,
4135
4156
(
2010
).
76.
J. M.
Lilly
and
S. C.
Olhede
, “
Generalized Morse wavelets as a superfamily of analytic wavelets
,”
IEEE Trans. Signal Process.
60
,
6036
6041
(
2012
).
77.
K.
Shin
and
J.
Hammond
,
Fundamentals of Signal Processing for Sound and Vibration Engineers
(
John Wiley and Sons
,
2008
).
78.
M.
Szoke
,
D.
Fiscaletti
, and
M.
Azarpeyvand
, “
Influence of boundary layer flow suction on trailing edge noise generation
,”
J. Sound Vib.
475
,
115276
(
2020
).
79.
A. T.
Mohan
,
D. V.
Gaitonde
, and
M. R.
Visbal
, “
Model reduction and analysis of deep dynamic stall on a plunging airfoil
,”
Comput. Fluids
129
,
1
19
(
2016
).
80.
A.
Sano
,
L. I.
Abreu
,
A. V. G.
Cavalieri
, and
W. R.
Wolf
, “
Trailing-edge noise from the scattering of spanwise-coherent structures
,”
Phys. Rev. Fluids
4
,
094602
(
2019
).
81.
J. F.
Williams
and
L. H.
Hall
, “
Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane
,”
J. Fluid Mech.
40
,
657
670
(
1970
).
You do not currently have access to this content.