Fluid flow excited by inertial waves in a rotating annulus with a trapezoidal cross section is experimentally investigated. The forcing is introduced by the precession of a flat annular lid bounding the cavity. Such a setup allows to investigate interactions between inertial waves and zonal flows in the presence of equivalent topographic beta-effect, and its dynamic behavior under weak and strong forcing is experimentally studied for the first time. Due to the specific dispersion relation of inertial waves, a cavity shape supports wave attractors that appear only for retrograde lid precession. At a relatively low wave intensity, a zonal flow is generated in the vicinity of a “virtual” axial cylinder, the radius of which coincides with the radius of the focusing reflection from the conical bottom. A succession of non-linear regimes is observed as forcing increases, starting with a clearly identifiable case of triadic resonance. Further, the frequency spectrum is progressively enriched by emergence of additional discrete components, gradually reaching the state of “overheated” wave turbulence with a significant continuous background of the frequency spectrum. Finally, a strong low-frequency component develops in the frequency spectrum, and the continuous background of the spectrum decreases dramatically. The low-frequency component corresponds to azimuthally periodic structures identified as Rossby waves. In the case of strong forcing, a long-term variability of zonal-flow velocity at the timescale of tens of forcing periods is observed, which is likely a consequence of the interaction of azimuthal structures corresponding to a rich wave number set.

1.
H. P.
Greenspan
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
1968
).
2.
H.
Görtler
, “
Einige bemerkungen über strömungen in rotierenden flüssigkeiten
,”
ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech.
24
,
210
214
(
1944
).
3.
H.
Oser
, “
Experimentelle untersuchung über harmonische schwingungen in rotierenden flüssigkeiten
,”
ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech.
38
,
386
391
(
1958
).
4.
K. D.
Aldridge
and
A.
Toomre
, “
Axisymmetric inertial oscillations of a fluid in a rotating spherical container
,”
J. Fluid Mech.
37
,
307
323
(
1969
).
5.
A. D.
McEwan
, “
Inertial oscillations in a rotating fluid cylinder
,”
J. Fluid Mech.
40
,
603
640
(
1970
).
6.
M.
Rieutord
,
B.
Georgeot
, and
L.
Valdettaro
, “
Wave attractors in rotating fluids: A paradigm for ill-posed Cauchy problems
,”
Phys. Rev. Lett.
85
,
4277
4280
(
2000
).
7.
A. M. M.
Manders
and
L. R. M.
Maas
, “
Observations of inertial waves in a rectangular basin with one sloping boundary
,”
J. Fluid Mech.
493
,
59
88
(
2003
).
8.
C.-G.
Rossby
, “
Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action
,”
J. Mar. Res.
2
,
38
55
(
1939
).
9.
J. R.
Holton
, “
An experimental study of forced barotropic Rossby waves
,”
Geophys. Fluid Dyn.
2
,
323
341
(
1971
).
10.
F. S.
Godeferd
and
F.
Moisy
, “
Structure and dynamics of rotating turbulence: A review of recent experimental and numerical results
,”
Appl. Mech. Rev.
67
,
030802
(
2015
).
11.
S.
Galtier
, “
Weak inertial-wave turbulence theory
,”
Phys. Rev. E
68
,
015301
(
2003
).
12.
C.
Lamriben
,
P.-P.
Cortet
, and
F.
Moisy
, “
Direct measurements of anisotropic energy transfers in a rotating turbulence experiment
,”
Phys. Rev. Lett.
107
,
024503
(
2011
).
13.
T.
Le Reun
,
B.
Favier
, and
M.
Le Bars
, “
Experimental study of the non-linear saturation of the elliptical instability: Inertial wave turbulence versus geostrophic turbulence
,”
J. Fluid Mech.
879
,
296
326
(
2019
).
14.
M.
Brunet
,
B.
Gallet
, and
P.-P.
Cortet
, “
Shortcut to geostrophy in wave-driven rotating turbulence: The quartetic instability
,”
Phys. Rev. Lett.
124
,
124501
(
2020
).
15.
J. F.
Scott
, “
Wave turbulence in a rotating channel
,”
J. Fluid Mech.
741
,
316
349
(
2014
).
16.
C.
Brouzet
,
E.
Ermanyuk
,
S.
Joubaud
,
I.
Sibgatullin
, and
T.
Dauxois
, “
Energy cascade in internal-wave attractors
,”
Europhys. Lett.
113
,
44001
(
2016
).
17.
G.
Davis
,
T.
Jamin
,
J.
Deleuze
,
S.
Joubaud
, and
T.
Dauxois
, “
Succession of resonances to achieve internal wave turbulence
,”
Phys. Rev. Lett.
124
,
204502
(
2020
).
18.
S.
Boury
,
I.
Sibgatullin
,
E.
Ermanyuk
,
N.
Shmakova
,
P.
Odier
,
S.
Joubaud
,
L. R. M.
Maas
, and
T.
Dauxois
, “
Vortex cluster arising from an axisymmetric inertial wave attractor
,”
J. Fluid Mech.
926
,
A12
(
2021
).
19.
F. P.
Bretherton
, “
Low frequency oscillations trapped near the equator
,”
Tellus
16
,
181
185
(
1964
).
20.
K.
Stewartson
, “
On trapped oscillations of a rotating fluid in a thin spherical shell
,”
Tellus
23
,
506
510
(
1971
).
21.
L. R. M.
Maas
and
F. P. A.
Lam
, “
Geometric focusing of internal waves
,”
J. Fluid Mech.
300
,
1
41
(
1995
).
22.
L. R. M.
Maas
, “
Wave attractors: Linear yet nonlinear
,”
Int. J. Bifurcation Chaos
15
,
2757
2782
(
2005
).
23.
IN.
Sibgatullin
and
E. V.
Ermanyuk
, “
Internal and inertial wave attractors: A review
,”
J. Appl. Mech. Tech. Phys.
60
,
284
302
(
2019
).
24.
L. R. M.
Maas
,
D.
Benielli
,
J.
Sommeria
, and
F. P. A.
Lam
, “
Observation of an internal wave attractor in a confined, stably stratified fluid
,”
Nature
388
,
557
561
(
1997
).
25.
J.
Hazewinkel
,
C.
Tsimitri
,
L. R. M.
Maas
, and
S. B.
Dalziel
, “
Observations on the robustness of internal wave attractors to perturbations
,”
Phys. Fluids
22
,
107102
(
2010
).
26.
L. R. M.
Maas
, “
Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids
,”
J. Fluid Mech.
437
,
13
28
(
2001
).
27.
E. J.
Hopfinger
,
F. K.
Browand
, and
Y.
Gagne
, “
Turbulence and waves in a rotating tank
,”
J. Fluid Mech.
125
,
505
534
(
1982
).
28.
F.
Moisy
,
C.
Morize
,
M.
Rabaud
, and
J.
Sommeria
, “
Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating turbulence
,”
J. Fluid Mech.
666
,
5
35
(
2011
).
29.
E.
Yarom
and
E.
Sharon
, “
Experimental observation of steady inertial wave turbulence in deep rotating flows
,”
Nat. Phys.
10
,
510
514
(
2014
).
30.
T.
Le Reun
,
B.
Favier
,
A.
Barker
, and
M.
Le Bars
, “
Inertial wave turbulence driven by elliptical instability
,”
Phys. Rev. Lett.
119
,
034502
(
2017
).
31.
I.
Proudman
, “
The almost-rigid rotation of viscous fluid between concentric spheres
,”
J. Fluid Mech.
1
,
505
516
(
1956
).
32.
K.
Stewartson
, “
On almost rigid rotations. II
,”
J. Fluid Mech.
26
,
131
144
(
1966
).
33.
S.
Subbotin
,
N.
Shmakova
,
E.
Ermanyuk
, and
V.
Kozlov
, “
Stewartson layer instability and triadic resonances in rotating sphere with oscillating inner core
,”
Phys. Fluids
34
,
064103
(
2022
).
34.
B.
Favier
,
A.
Barker
,
C.
Baruteau
, and
G.
Ogilvie
, “
Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies
,”
Mon. Not. R. Astron. Soc.
439
,
845
860
(
2014
).
35.
A.
Sauret
,
M.
Le Bars
, and
P.
Le Gal
, “
Tide-driven shear instability in planetary liquid cores
,”
Geophys. Res. Lett.
41
,
6078
6083
, https://doi.org/10.1002/2014GL061434 (
2014
).
36.
S.
Lorenzani
and
A.
Tilgner
, “
Fluid instabilities in precessing spheroidal cavities
,”
J. Fluid Mech.
447
,
111
128
(
2001
).
37.
R.
Hide
and
C.
Titman
, “
Detached shear layers in a rotating fluid
,”
J. Fluid Mech.
29
,
39
60
(
1967
).
38.
K.
Hashimoto
, “
On the stability of the Stewartson layer
,”
J. Fluid Mech.
76
,
289
306
(
1976
).
39.
T.
Solomon
,
W.
Holloway
, and
H. L.
Swinney
, “
Shear flow instabilities and Rossby waves in barotropic flow in a rotating annulus
,”
Phys. Fluids
5
,
1971
1982
(
1993
).
40.
K. B.
Winters
, “
Tidally-forced flow in a rotating, stratified, shoaling basin
,”
Ocean Modell.
90
,
72
81
(
2015
).
41.
C.
Pacary
,
T.
Dauxois
,
E.
Ermanyuk
,
P.
Metz
,
M.
Moulin
, and
S.
Joubaud
, “
Observation of inertia-gravity wave attractors in an axisymmetric enclosed basin
,”
Phys. Rev. Fluids
(submitted) (
2023
).
42.
I.
Sibgatullin
,
E.
Ermanyuk
,
X.
Xiulin
,
L.
Maas
, and
T.
Dauxois
, “
Direct numerical simulation of three-dimensional inertial wave attractors
,” in
2017 Ivannikov ISPRAS Open Conference (ISPRAS)
(
Moscow, Russia
,
2017
), pp.
137
143
.
43.
W.
Thielicke
and
R.
Sonntag
, “
Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab
,”
J. Open Res. Software
9
,
12
(
2021
).
44.
S.
Subbotin
and
M.
Shiryaeva
, “
On the linear and non-linear fluid response to the circular forcing in a rotating spherical shell
,”
Phys. Fluids
33
,
066603
(
2021
).
45.
C.
Brouzet
,
E.
Ermanyuk
,
S.
Joubaud
,
G.
Pillet
, and
T.
Dauxois
, “
Internal wave attractors: Different scenarios of instability
,”
J. Fluid Mech.
811
,
544
568
(
2017
).
46.
P.
Flandrin
,
Time-Frequency/Time-Scale Analysis, Time-Frequency Toolbox for MATLAB
(
Academic Press
,
San Diego
,
1999
).
47.
S.
Subbotin
and
V.
Dyakova
, “
Inertial waves and steady flows in a liquid filled librating cylinder
,”
Microgravity Sci. Technol.
30
(
4
),
383
392
(
2018
).
48.
S.
Subbotin
, “
Steady circulation induced by inertial modes in a librating cylinder
,”
Phys. Rev. Fluids
5
(
1
),
014804
(
2020
).
49.
M.
Le Bars
,
D.
Cébron
, and
P.
Le Gal
, “
Flows driven by libration, precession, and tides
,”
Annu. Rev. Fluid Mech.
47
,
163
193
(
2015
).
50.
M.
Mercier
,
N.
Garnier
, and
T.
Dauxois
, “
Reflection and diffraction of internal waves analyzed with the Hilbert transform
,”
Phys. Fluids
20
,
086601
(
2008
).
51.
B.
Bourget
,
T.
Dauxois
,
S.
Joubaud
, and
P.
Odier
, “
Experimental study of parametric subharmonic instability for internal plane waves
,”
J. Fluid Mech.
723
,
1
20
(
2013
).
52.
M. V.
Nezlin
, “
Rossby solitons (experimental investigations and laboratory model of natural vortices of the Jovian great red spot type)
,”
Sov. Phys. Usp.
29
,
807
842
(
1986
).
53.
V.
Kozlov
,
N.
Kozlov
, and
S.
Subbotin
, “
Instabilities and pattern formation in rotating spherical cavity with oscillating inner core
,”
Eur. J. Mech. B
63
,
39
46
(
2017
).
54.
S.
Subbotin
and
M.
Shiryaeva
, “
Steady vortex flow induced by inertial wave attractor in a librating cylinder with sloping ends
,”
Microgravity Sci. Technol.
34
(
5
),
89
(
2022
).
55.
Y.
Lin
and
J.
Noir
, “
Libration-driven inertial waves and mean zonal flows in spherical shells
,”
Geophys. Astrophys. Fluid Dyn.
115
,
258
279
(
2021
).
56.
T.
Dauxois
,
S.
Joubaud
,
P.
Odier
, and
A.
Venailles
, “
Instabilities of internal gravity wave beams
,”
Annu. Rev. Fluid Mech.
50
,
131
156
(
2018
).
You do not currently have access to this content.