The characterization of single bubble in gas–liquid two phase flow is a critical yet unresolved issue in both science and industry. In this study, the volume-of-fluid (VOF) method is used to numerically simulate and experimentally investigate the effect of initial bubble diameter, liquid viscosity, and surface tension on bubble deformation and the internal flow field of the bubble in a pool of stationary liquid. The findings indicate that as liquid viscosity increases, the bubble's rising speed decreases, and the bubble tends to oscillate. The variation in bubble deformation ratio and the degree of fluctuation increase with the bubble's initial diameter and decrease with the viscosity of the liquid phase. Additionally, as the surface tension of the liquid decreases, the bubble becomes more prone to rupture, and the number of ruptures increases. The flow field inside the bubble can be classified into three categories: “double main vortex type,” “double main vortex type with separated vortex,” and “double main vortex type with scattered vortex.” The velocity reaches its maximum at the center of each vortex type, and the velocity at the interface varies as the bubble interface shape changes. This work lays the foundation for the study of the flow field inside the bubble and improves the predictability of gas–liquid equipment design.

1.
R. H.
Chen
,
W. X.
Tian
,
G. H.
Su
,
S. Z.
Qiu
,
Y.
Ishiwatari
, and
Y.
Oka
, “
Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid
,”
Chem. Eng. Sci.
66
,
5055
(
2011
).
2.
P.
Chen
,
M. P.
Dudukovi
, and
J.
Sanyal
, “
Three-dimensional simulation of bubble column flows with bubble coalescence and breakup
,”
AIChE J.
51
,
696
(
2005
).
3.
F.
Chu
,
L.
Yang
,
X.
Du
, and
Y.
Yang
, “
Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column
,”
Appl. Energy
190
,
1068
(
2017
).
4.
B.
Cui
,
B.
Ni
, and
Q.
Wu
, “
Bubble–bubble interaction effects on dynamics of multiple bubbles in a vortical flow field
,”
Adv. Mech. Eng.
8
,
168781401663170
(
2016
).
5.
S.
Wang
,
Q.
Gui
,
J.
Zhang
,
Y.
Gao
,
J.
Xu
, and
X.
Jia
, “
Theoretical and experimental study of bubble dynamics in underwater explosions
,”
Phys. Fluids
33
,
126113
(
2021
).
6.
W.
Liang
,
R.
Chen
,
J.
Zheng
,
X.
Li
, and
F.
Lu
, “
Interaction of two approximately equal-size bubbles produced by sparks in a free field
,”
Phys. Fluids
33
,
067107
(
2021
).
7.
L.
Gemello
,
V.
Cappello
,
F.
Augier
,
D.
Marchisio
, and
C.
Plais
, “
CFD-based scale-up of hydrodynamics and mixing in bubble columns
,”
Chem. Eng. Res. Des.
136
,
846
(
2018
).
8.
X.
Guan
and
N.
Yang
, “
Bubble properties measurement in bubble columns: From homogeneous to heterogeneous regime
,”
Chem. Eng. Res. Des.
127
,
103
(
2017
).
9.
L.
Zhang
,
Z.
Zhou
,
J.
Deng
, and
X.
Shao
, “
A numerical study on the drag law of a gas bubble using dynamic body force method
,”
Phys. Fluids
33
,
063320
(
2021
).
10.
N.
Hasan
and
Z. B.
Zakaria
, “
Computational approach for a pair of bubble coalescence process
,”
Int. J. Heat Fluid Flow
32
,
755
(
2011
).
11.
Y.
Hallez
and
D.
Legendre
, “
Interaction between two spherical bubbles rising in a viscous liquid
,”
J. Fluid Mech.
673
,
406
(
2011
).
12.
A.
Desai
,
S.
Mittal
, and
S.
Mittal
, “
Experimental investigation of vortex shedding past circular cylinder in the high subcritical regime
,”
Phys. Fluids
32
,
014105
(
2020
).
13.
A. R.
Premlata
,
M. K.
Tripathi
, and
K. C.
Sahu
, “
Dynamics of rising bubble inside a viscosity-stratified medium
,”
Phys. Fluids
27
,
072105
(
2015
).
14.
R.
Kipping
,
M.
Wagner
, and
U.
Hampel
, “
On inter-bubble distances and bubble clustering in bubbly Flows: An experimental study
,”
Chem. Eng. J.
431
,
133486
(
2022
).
15.
T.-J.
Lin
and
G.-M.
Lin
, “
Mechanisms of in-line coalescence of two-unequal bubbles in a non-Newtonian fluid
,”
Chem. Eng. J.
155
,
750
(
2009
).
16.
M. K.
Tripathi
,
K. C.
Sahu
, and
R.
Govindarajan
, “
Dynamics of an initially spherical bubble rising in quiescent liquid
,”
Nat. Commun.
6
,
6268
(
2015
).
17.
D. M.
Sharaf
,
A. R.
Premlata
,
M. K.
Tripathi
,
B.
Karri
, and
K. C.
Sahu
, “
Shapes and paths of an air bubble rising in quiescent liquids
,”
Phys. Fluids
29
,
122104
(
2017
).
18.
Z.
Liu
,
Y.
Zheng
,
L.
Jia
, and
Q.
Zhang
, “
Study of bubble induced flow structure using PIV
,”
Chem. Eng. Sci.
60
,
3537
(
2005
).
19.
S.
Yamoah
,
C. K.
Owusu-Manu
, and
E. H. K.
Akaho
, “
Numerical investigation of bubble interaction mechanisms in gas–liquid bubbly flows: Harmonisation of bubble breakup and coalescence effects
,”
Int. J. Multiphase Flow
144
,
103781
(
2021
).
20.
H.
Mirsandi
,
G.
Kong
,
K. A.
Buist
,
M. W.
Baltussen
,
E. A. J. F.
Peters
, and
J. A. M.
Kuipers
, “
Numerical study on the interaction of two bubbles rising side-by-side in viscous liquids
,”
Chem. Eng. J.
410
,
128257
(
2021
).
21.
Y.
Song
,
J.
Zhu
,
C.
Zhang
,
Z.
Sun
, and
X.
Lu
, “
Comparison of liquid–solid flow characteristics in upward and downward circulating fluidized beds by CFD approach
,”
Chem. Eng. Sci.
196
,
501
(
2019
).
22.
H.
Nazari-Mahroo
,
K.
Pasandideh
,
H. A.
Navid
, and
R.
Sadighi-Bonabi
, “
How important is the liquid bulk viscosity effect on the dynamics of a single cavitation bubble?
,”
Ultrason. Sonochem.
49
,
47
(
2018
).
23.
M.
Wu
and
M.
Gharib
, “
Experimental studies on the shape and path of small air bubbles rising in clean water
,”
Phys. Fluids
14
,
L49
(
2002
).
24.
T.
Sirino
,
V.
Machado
,
E.
Mancilla
, and
R. E. M.
Morales
, “
Dynamics of single bubbles rising in confined square and rectangular channels
,”
Int. J. Multiphase Flow
157
,
104257
(
2022
).
25.
H.
Zhang
,
K.
Guo
,
Y.
Wang
,
A.
Sayyar
, and
T.
Wang
, “
Numerical simulations of the effect of liquid viscosity on gas–liquid mass transfer of a bubble column with a CFD-PBM coupled model
,”
Int. J. Heat Mass Transfer
161
,
120229
(
2020
).
26.
C.
Zhang
and
I.
Menshov
, “
Eulerian modelling of compressible three-fluid flows with surface tension
,”
Russ. J. Numer. Anal. Math. Modell.
34
,
225
(
2019
).
27.
F.
Risso
, “
Agitation, mixing, and transfers induced by bubbles
,”
Annu. Rev. Fluid Mech.
50
,
25
(
2018
).
28.
N.
Ochiai
and
J.
Ishimoto
, “
Numerical analysis of the effect of bubble distribution on multiple-bubble behavior
,”
Ultrason. Sonochem.
61
,
104818
(
2020
).
29.
A. R.
Premlata
,
M. K.
Tripathi
,
B.
Karri
, and
K. C.
Sahu
, “
Numerical and experimental investigations of an air bubble rising in a Carreau–Yasuda shear-thinning liquid
,”
Phys. Fluids
29
,
033103
(
2017
).
30.
D.
Funfschilling
and
H. Z.
Li
, “
Effects of the injection period on the rise velocity and shape of a bubble in a non-Newtonian fluid
,”
Chem. Eng. Res. Des.
84
,
875
(
2006
).
31.
L.
Zhang
,
C.
Yang
, and
Z.-S.
Mao
, “
Numerical simulation of a bubble rising in shear-thinning fluids
,”
J. Non-Newtonian Fluid Mech.
165
,
555
(
2010
).
32.
A. R.
Premlata
,
M. K.
Tripathi
,
B.
Karri
, and
K. C.
Sahu
, “
Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime
,”
J. Non-Newtonian Fluid Mech.
239
,
53
(
2017
).
33.
Y.
Li
,
J. P.
Zhang
, and
L. S.
Fan
, “
Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column
,”
Chem. Eng. Sci.
55
,
4597
(
2000
).
34.
M.
Rahman
,
K.
Hasan
, and
H.
Pan
, “
Capturing transition around low-Reynolds number hydrofoil with zero-equation transition model
,”
Phys. Fluids
34
,
074115
(
2022
).
35.
N.
Takagaki
and
S.
Komori
, “
Air–water mass transfer mechanism due to the impingement of a single liquid drop on the air–water interface
,”
Int. J. Multiphase Flow
60
,
30
(
2014
).
36.
X.
Liu
,
L.
Wang
, and
W.
Ge
, “
Meso-scale statistical properties of gas-solid flow–A direct numerical simulation (DNS) study
,”
AIChE J.
63
,
3
(
2017
).
37.
T.
Saito
and
M.
Toriu
, “
Effects of a bubble and the surrounding liquid motions on the instantaneous mass transfer across the gas–liquid interface
,”
Chem. Eng. J.
265
,
164
(
2015
).
38.
M.
Moragues Ginard
,
G.
Bernardino
,
M.
Vázquez
, and
G.
Houzeaux
, “
Fourier stability analysis and local Courant number of the preconditioned variational multiscale stabilization (P-VMS) for Euler compressible flow
,”
Comput. Methods Appl. Mech. Eng.
301
,
28
(
2016
).
39.
V. T.
Nguyen
,
C.-H.
Song
,
B.-U.
Bae
, and
D.-J.
Euh
, “
Modeling of bubble coalescence and break-up considering turbulent suppression phenomena in bubbly two-phase flow
,”
Int. J. Multiphase Flow
54
,
31
(
2013
).
40.
Y.
Zhao
,
X.
Li
,
J.
Cheng
,
C.
Yang
, and
Z.-S.
Mao
, “
Experimental study on liquid–liquid macromixing in a stirred tank
,”
Ind. Eng. Chem. Res.
50
,
5952
(
2011
).
41.
C.
Tang
,
P.
Zhang
, and
C. K.
Law
, “
Bouncing, coalescence, and separation in head-on collision of unequal-size droplets
,”
Phys. Fluids
24
,
022101
(
2012
).
42.
K. L.
Tse
,
T.
Martin
,
C. M.
Mcfarlane
, and
A. W.
Nienow
, “
Small bubble formation via a coalescence dependent break-up mechanism
,”
Chem. Eng. Sci.
58
,
275
(
2003
).
43.
M. W.
Hlawitschka
,
P.
Kováts
,
B.
Dönmez
,
K.
Zähringer
, and
H. J.
Bart
, “
Bubble motion and reaction in different viscous liquids
,”
Exp. Comput. Multiphase Flow
4
,
26
(
2022
).
44.
Z.
Yu
,
H.
Yang
, and
L.-S.
Fan
, “
Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method
,”
Chem. Eng. Sci.
66
,
3441
(
2011
).
45.
G.
Kelbaliyev
and
K.
Ceylan
, “
Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops
,”
Chem. Eng. Commun.
194
,
1623
(
2007
).
46.
J.
Liu
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H.
Li
, “
Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids
,”
Chem. Eng. Sci.
93
,
55
(
2013
).
47.
X.
Wang
,
H.
Dong
,
X.
Zhang
,
L.
Yu
,
S.
Zhang
, and
Y.
Xu
, “
Numerical simulation of single bubble motion in ionic liquids
,”
Chem. Eng. Sci.
65
,
6036
(
2010
).
You do not currently have access to this content.