We examine the linear stability of the gravity-driven flow of a viscoelastic fluid film down an inclined plane. The viscoelastic fluid is modeled using the Oldroyd-B constitutive equation and, therefore, exhibits a constant shear viscosity and a positive first normal stress difference in viscometric shearing flows; the latter class of flows includes the aforesaid film-flow configuration. We show that the film-flow configuration is susceptible to two distinct purely elastic instabilities in the inertialess limit. The first instability owes its origin entirely to the existence of a free surface and has been examined earlier [Shaqfeh et al., “The stability of gravity driven viscoelastic film-flow at low to moderate Reynolds number,” J. Non-Newtonian Fluid Mech. 31, 87–113 (1989)]. The second one is the analog of the centermode instability recently discovered in plane Poiseuille flow [Khalid et al., “Continuous pathway between the elasto-inertial and elastic turbulent states in viscoelastic channel flow,” Phys. Rev. Lett. 127, 134502 (2021)] and owes its origin to the base-state shear; it is an example of a purely elastic instability of shearing flows with rectilinear streamlines. One may draw an analogy of the aforesaid pair of unstable elastic modes with the inertial free-surface and shear-driven instabilities known for the analogous flow configuration of a Newtonian fluid. While surface tension has the expected stabilizing effect on the Newtonian and elastic free-surface modes, its effect on the corresponding shear modes is, surprisingly, more complicated. For both the Newtonian shear mode and the elastic centermode, surface tension plays a dual role, with there being parameter regimes where it acts as a stabilizing and destabilizing influence. While the Newtonian shear mode remains unstable in the limit of vanishing surface tension, the elastic centermode becomes unstable only when the appropriate non-dimensional surface tension parameter exceeds a threshold. In the limit of surface tension being infinitely dominant, the free-surface boundary conditions for the film-flow configuration reduce to the centerline symmetry conditions satisfied by the elastic centermode in plane Poiseuille flow. As a result, the regime of instability of the film-flow centermode becomes identical to that of the original channel-flow centermode. At intermediate values of the surface tension parameter, however, there exist regimes where the film-flow centermode is unstable even when its channel-flow counterpart is stable. We end with a discussion of the added role of inertia on the aforementioned elastic instabilities.

1.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
2.
T. B.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
573
(
1957
).
3.
C.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
,
321
334
(
1963
).
4.
C. S.
Yih
, “
Instability due to viscosity stratification
,”
J. Fluid Mech.
27
,
337
352
(
1967
).
5.
E. J.
Hinch
, “
A note on the mechanism of the instability at the interface between two shearing fluids
,”
J. Fluid Mech.
144
,
463
465
(
1984
).
6.
Y. Y.
Renardy
, “
Stability of the interface in two-layer Couette flow of upper convected Maxwell liquids
,”
J. Non-Newtonian Fluid Mech.
28
,
99
115
(
1988
).
7.
K. P.
Chen
, “
Elastic instability of the interface in Couette flow of viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
40
,
261
267
(
1991
).
8.
E. J.
Hinch
,
O. J.
Harris
, and
J. M.
Rallison
, “
The instability mechanism for two elastic liquids being co-extruded
,”
J. Non-Newtonian Fluid Mech.
43
,
311
324
(
1992
).
9.
J. F.
Brady
and
I. C.
Carpen
, “
Second normal stress jump instability in non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
102
,
219
232
(
2002
).
10.
R. G.
Larson
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
11.
H. A.
Castillo Sánchez
,
M. R.
Jovanović
,
S.
Kumar
,
A.
Morozov
,
V.
Shankar
,
G.
Subramanian
, and
H. J.
Wilson
, “
Understanding viscoelastic flow instabilities: Oldroyd-B and beyond
,”
J. Non-Newtonian Fluid Mech.
302
,
104742
(
2022
).
12.
S. S.
Datta
,
A. M.
Ardekani
,
P. E.
Arratia
,
A. N.
Beris
,
I.
Bischofberger
,
G. H.
McKinley
,
J. G.
Eggers
,
J. E.
López-Aguilar
,
S. M.
Fielding
,
A.
Frishman
,
M. D.
Graham
,
J. S.
Guasto
,
S. J.
Haward
,
A. Q.
Shen
,
S.
Hormozi
,
A.
Morozov
,
R. J.
Poole
,
V.
Shankar
,
E. S. G.
Shaqfeh
,
H.
Stark
,
V.
Steinberg
,
G.
Subramanian
, and
H. A.
Stone
, “
Perspectives on viscoelastic flow instabilities and elastic turbulence
,”
Phys. Rev. Fluids
7
,
080701
(
2022
).
13.
E. S. G.
Shaqfeh
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
14.
A. S.
Gupta
, “
Stability of a visco-elastic liquid film flowing down an inclined plane
,”
J. Fluid Mech.
28
,
17
28
(
1967
).
15.
W.
Lai
, “
Stability of an elastico-viscous liquid film flowing down an inclined plane
,”
Phys. Fluids
10
,
844
847
(
1967
).
16.
E. S.
Shaqfeh
,
R. G.
Larson
, and
G. H.
Fredrickson
, “
The stability of gravity driven viscoelastic film-flow at low to moderate Reynolds number
,”
J. Non-Newtonian Fluid Mech.
31
,
87
113
(
1989
).
17.
S. P.
Lin
, “
Instability of a liquid film flowing down an inclined plane
,”
Phys. Fluids
10
,
308
313
(
1967
).
18.
J. M.
Floryan
,
S. H.
Davis
, and
R. E.
Kelly
, “
Instabilities of a liquid film flowing down a slightly inclined plane
,”
Phys. Fluids
30
,
983
989
(
1987
).
19.
D.
Samanta
,
Y.
Dubief
,
M.
Holzner
,
C.
Schäfer
,
A. N.
Morozov
,
C.
Wagner
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Proc. Natl. Acad. Sci.
110
,
10557
10562
(
2013
).
20.
G. H.
Choueiri
,
J. M.
Lopez
,
A.
Varshney
,
S.
Sankar
, and
B.
Hof
, “
Experimental observation of the origin and structure of elastoinertial turbulence
,”
Proc. Natl. Acad. Sci.
118
,
e2102350118
(
2021
).
21.
P.
Garg
,
I.
Chaudhary
,
M.
Khalid
,
V.
Shankar
, and
G.
Subramanian
, “
Viscoelastic pipe flow is linearly unstable
,”
Phys. Rev. Lett.
121
,
024502
(
2018
).
22.
I.
Chaudhary
,
P.
Garg
,
V.
Shankar
, and
G.
Subramanian
, “
Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow
,”
J. Fluid Mech.
881
,
119
163
(
2019
).
23.
I.
Chaudhary
,
P.
Garg
,
G.
Subramanian
, and
V.
Shankar
, “
Linear instability of viscoelastic pipe flow
,”
J. Fluid Mech.
908
,
A11
(
2021
).
24.
M.
Khalid
,
I.
Chaudhary
,
P.
Garg
,
V.
Shankar
, and
G.
Subramanian
, “
The centre-mode instability of viscoelastic plane Poiseuille flow
,”
J. Fluid Mech.
915
,
A43
(
2021
).
25.
M.
Dong
and
M.
Zhang
, “
Asymptotic study of linear instability in a viscoelastic pipe flow
,”
J. Fluid Mech.
935
,
A28
(
2022
).
26.
J.
Page
,
Y.
Dubief
, and
R. R.
Kerswell
, “
Exact travelling wave solutions in viscoelastic channel flow
,”
Phys. Rev. Lett.
125
,
154501
(
2020
).
27.
G.
Buza
,
J.
Page
, and
R. R.
Kerswell
, “
Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers
,”
J. Fluid Mech.
940
,
A11
(
2022
).
28.
Y.
Dubief
,
J.
Page
,
R. R.
Kerswell
,
V. E.
Terrapon
, and
V.
Steinberg
, “
First coherent structure in elasto-inertial turbulence
,”
Phys. Rev. Fluids
7
,
073301
(
2022
).
29.
M.
Khalid
,
V.
Shankar
, and
G.
Subramanian
, “
Continuous pathway between the elasto-inertial and elastic turbulent states in viscoelastic channel flow
,”
Phys. Rev. Lett.
127
,
134502
(
2021
).
30.
H.-H.
Wei
, “
Stability of a viscoelastic falling film with surfactant subjected to an interfacial shear
,”
Phys. Rev. E
71
,
066306
(
2005
).
31.
S.
Pal
and
A.
Samanta
, “
Linear stability of a contaminated shear-imposed viscoelastic liquid flowing down an inclined plane
,”
Phys. Fluids
33
,
123107
(
2021
).
32.
S.
Pal
and
A.
Samanta
, “
Linear stability of a surfactant-laden viscoelastic liquid flowing down a slippery inclined plane
,”
Phys. Fluids
33
,
054101
(
2021
).
33.
T.
Hu
,
Q.-F.
Fu
,
Y.
Xing
,
L.-J.
Yang
, and
L.
Xie
, “
Stability of a thin viscoelastic film falling down an inclined plane
,”
Phys. Rev. Fluids
6
,
083902
(
2021
).
34.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
1988
).
35.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Fluid Mechanics Vol.
1
(
John Wiley
,
New York
,
1977
).
36.
Dimensional variables appear with a superscript “ *” in this work, while dimensionless variables appear without one.
37.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
1981
).
38.
R. G.
Larson
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor–Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
39.
Y. L.
Joo
and
E. S. G.
Shaqfeh
, “
Observations of purely elastic instabilities in the Taylor–Dean flow of a Boger fluid
,”
J. Fluid Mech.
262
,
27
73
(
1994
).
40.
J. A.
Byars
,
A.
Oztekin
,
R. A.
Brown
, and
G. H.
McKinley
, “
Spiral instabilities in the flow of highly elastic fluids between rotating parallel disc
,”
J. Fluid Mech.
271
,
173
218
(
1994
).
41.
G. H.
McKinley
,
J. A.
Byars
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid
,”
J. Non-Newtonian Fluid Mech.
40
,
201
229
(
1991
).
42.
P.
Pakdel
and
G. H.
McKinley
, “
Elastic instability and curved streamlines
,”
Phys. Rev. Lett.
77
,
2459
2462
(
1996
).
43.
H. J.
Wilson
,
M.
Renardy
, and
Y. Y.
Renardy
, “
Structure of the spectrum in zero Reynolds number shear flow of the UCM and Oldroyd-B liquids
,”
J. Non-Newtonian Fluid Mech.
80
,
251
268
(
1999
).
44.
H.
Chang
, “
Wave evolution on a falling film
,”
Annu. Rev. Fluid Mech.
26
,
103
136
(
1994
).
45.
A.
Jain
and
V.
Shankar
, “
Instability suppression in viscoelastic film flows down an inclined plane lined with a deformable solid layer
,”
Phys. Rev. E
76
,
046314
(
2007
).
You do not currently have access to this content.