Paints and coatings often feature interfacial defects due to disturbances during the deposition process, which, if they persist until solidification, worsens the product quality. In this article, we investigate the stability of a thin liquid film dragged by a vertical substrate moving against gravity, a fundamental flow configuration in various coating processes. The receptivity of the liquid film to three-dimensional disturbances is analyzed with Direct Numerical Simulations (DNS) and an in-house Integral Boundary Layer (IBL) film model. The latter was used for linear stability analysis and nonlinear wave propagation analysis. The numerical implementation of the IBL film model combines a finite volume formulation with a pseudo-spectral approach for the capillary terms that allows one to investigate non-periodic surface tension-dominated flows. The numerical model was successfully validated with DNS computations. The combination of these numerical tools allows one to describe the mechanisms of capillary and nonlinear damping and identify the instability threshold of the coating processes. The results show that transverse modulations can be beneficial for damping two-dimensional waves within the range of operational conditions considered in this study, which are relevant to air-knife and slot-die coating.

1.
W.
Nusselt
, “
Die oberflachenkondensation des wasserdamphes
,”
VDI-Z.
60
,
541
(
1916
).
2.
P. L.
Kapitza
, “
Wave flow of thin layers of a viscous fluid. I. Free flow. II. Fluid flow in the presence of continuous gas flow and heat transfer
,”
Zh. Eksp. Theor. Fiz.
18
,
3
18
(
1948
).
3.
E. A.
Demekhin
,
E. N.
Kalaidin
,
S.
Kalliadasis
, and
S. Y.
Vlaskin
, “
Three-dimensional localized coherent structures of surface turbulence. I. Scenarios of two-dimensional-three-dimensional transition
,”
Phys. Fluids
19
,
114103
(
2007
).
4.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
5.
C.
Ruyer-Quil
,
N.
Kofman
,
D.
Chasseur
, and
S.
Mergui
, “
Dynamics of falling liquid films
,”
Eur. Phys. J. E
37
,
30
(
2014
).
6.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
45
,
150
(
1966
).
7.
V. Y.
Shkadov
, “
Wave formation on surface of viscous liquid due to tangential stress
,”
Fluid Dyn.
5
,
473
(
1973
).
8.
E. A.
Demekhin
and
V. Y.
Shkadov
, “
Three-dimensional waves in a liquid flowing down a wall
,”
Fluid Dyn.
19
,
689
695
(
1985
).
9.
C.
Ruyer-Quil
and
P.
Manneville
, “
Improved modeling of flows down inclined planes
,”
Eur. Phys. J. B
15
,
357
(
2000
).
10.
C.
Ruyer-Quil
and
P.
Manneville
, “
Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations
,”
Phys. Fluids
14
,
170
(
2002
).
11.
S. V.
Alekseenko
,
V. E.
Nakoryakov
, and
B. G.
Pokusaev
, “
Wave formation on vertical falling liquid films
,”
Int. J. Multiphase Flow
11
,
607
627
(
1985
).
12.
J.
Liu
and
J. P.
Gollub
, “
Solitary wave dynamics of film flows
,”
Phys. Fluids
6
,
1702
(
1994
).
13.
B.
Ramaswamy
,
S.
Chippada
, and
S. W.
Joo
, “
A full-scale numerical study of interfacial instabilities in thin-film flows
,”
J. Fluid Mech.
325
,
163
(
1996
).
14.
B.
Scheid
,
C.
Ruyer-Quil
, and
P.
Manneville
, “
Wave patterns in film flows: Modelling and three-dimensional waves
,”
J. Fluid Mech.
562
,
183
(
2006
).
15.
H. C.
Chang
,
E. A.
Demekhin
, and
E.
Kalaidin
, “
Simulation of noise-driven wave dynamics on a falling film
,”
AIChE J.
42
,
1553
(
1996
).
16.
J.
Liu
,
J. B.
Schneider
, and
J. P.
Gollub
, “
Three-dimensional instabilities of film flows
,”
Phys. Fluids
7
,
55
(
1995
).
17.
T.
Nosoko
and
A.
Miyara
, “
The evolution and subsequent dynamics of waves on a vertically falling liquid film
,”
Phys. Fluids
16
,
1118
(
2004
).
18.
S. F.
Kistler
and
P. M.
Schweizer
,
Liquid Film Coating: Scientific Principles and Their Technological Implications
(
Chapman & Hall
,
1997
).
19.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
(
2004
).
20.
A.
Gosset
,
M. A.
Mendez
, and
J. M.
Buchlin
, “
An experimental analysis of the stability of the jet wiping process. I. Characterization of the coating uniformity
,”
Exp. Therm. Fluid Sci.
103
,
51
65
(
2019
).
21.
M. A.
Mendez
,
A.
Gosset
, and
J. M.
Buchlin
, “
Experimental analysis of the stability of the jet wiping process. II. Multiscale modal analysis of the gas jet-liquid film interaction
,”
Exp. Therm. Fluid Sci.
106
,
48
67
(
2019
).
22.
D.
Barreiro-Villaverde
,
A.
Gosset
, and
M.
Mendez
, “
On the dynamics of jet wiping: Numerical simulations and modal analysis
,”
Phys. Fluids
33
,
062114
(
2021
).
23.
H. S.
Kheshgi
and
L. E.
Scriven
, “
Measurement of liquid film profiles by Moiré topography
,”
Chem. Eng. Sci.
38
,
525
(
1983
).
24.
T. G.
Myers
, “
Thin films with high surface tension
,”
SIAM Rev.
40
,
441
(
1998
).
25.
S. E.
Orchard
, “
On surface levelling in viscous liquids and gels
,”
Appl. Sci. Res., Sect. A
11
,
451
464
(
1963
).
26.
W. S.
Overdiep
, “
The levelling of paints
,”
Prog. Org. Coat.
14
,
159
(
1986
).
27.
L. W.
Schwartz
and
D. E.
Weidner
, “
Modeling of coating flows on curved surfaces
,”
J. Eng. Math.
29
,
91
(
1995
).
28.
D. W.
Bousfield
, “
Long-wave analysis of viscoelastic film leveling
,”
J. Non-Newtonian Fluid Mech.
40
,
47
(
1991
).
29.
S. D.
Howison
,
J. A.
Moriarty
,
J. R.
Ockendon
,
E. L.
Terrill
, and
S. K.
Wilson
, “
A mathematical model for drying paint layers
,”
J. Eng. Math.
32
,
377
(
1997
).
30.
X.
Wang
,
Y.
Huang
,
C. E.
Weinell
,
S. M.
Olsen
, and
S.
Kiil
, “
Leveling kinetics of coatings with solvent evaporation and non-Newtonian rheology
,”
Prog. Org. Coat.
132
,
169
(
2019
).
31.
O. J.
Romero
and
M. S.
Carvalho
, “
Response of slot coating flows to periodic disturbances
,”
Chem. Eng. Sci.
63
,
2161
(
2008
).
32.
E. B.
Perez
and
M. S.
Carvalho
, “
Optimization of slot-coating processes: Minimizing the amplitude of film-thickness oscillation
,”
J. Eng. Math.
71
,
97
(
2011
).
33.
S.
Lee
and
J.
Nam
, “
Response of slot coating flow to gap disturbances: Effects of fluid properties, operating conditions, and die configurations
,”
J. Coat. Technol. Res.
12
,
949
(
2015
).
34.
F.
Joos
, “
A simple model of frequency response for slot coaters
,” in
Proceeding of European Coating Symposium,
1999
.
35.
T.
Tsuda
,
J. M.
De Santos
, and
L. E.
Scriven
, “
Frequency response analysis of slot coating
,”
AIChE J.
56
,
2268
(
2010
).
36.
M.
Mendez
,
A.
Gosset
,
B.
Scheid
,
M.
Balabane
, and
J.-M.
Buchlin
, “
Dynamics of the jet wiping process via integral models
,”
J. Fluid Mech.
911
,
A47
(
2021
).
37.
R.
Vellingiri
, “
Dynamics of co-current gas–liquid film flow through a slippery channel
,”
Phys. Fluids
35
,
032102
(
2023
).
38.
T.
Ivanova
,
F.
Pino
,
B.
Scheid
, and
M. A.
Mendez
, “
Evolution of waves in liquid films on moving substrates
,”
Phys. Fluids
35
,
013609
(
2023
).
39.
H.-C.
Chang
and
E.
Demekhin
,
Complex Wave Dynamics on Thin Film
, edited by
H.-C.
Chang
and
E. A.
Demekhin
(
Elsevier
,
2002
), Vol.
14
, p.
402
.
40.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M.
Velarde
,
Falling Liquid Films
(
Springer
,
2012
), p.
176
.
41.
M. A.
Mendez
,
D.
Hess
,
B. B.
Watz
, and
J. M.
Buchlin
, “
Multiscale proper orthogonal decomposition (mPOD) of TR-PIV data-a case study on stationary and transient cylinder wake flows
,”
Meas. Sci. Technol.
31
,
094014
(
2020
).
42.
N. A.
Malamataris
,
M.
Vlachogiannis
, and
V.
Bontozoglou
, “
Solitary waves on inclined films: Flow structure and binary interactions
,”
Phys. Fluids
14
,
1082
(
2002
).
43.
F. O.
Silva
,
I. R.
Siqueira
,
M. S.
Carvalho
, and
R. L.
Thompson
, “
Slot coating flows with a Boussinesq–Scriven viscous interface
,”
Phys. Fluids
35
,
042106
(
2023
).
44.
W. Y.
Jiang
,
B. T.
Hellenbrook
,
S. P.
Lin
, and
S. J.
Weinstein
, “
Low-Reynolds-number instabilities in three-layer flow down an inclined wall
,”
J. Fluid Mech.
539
,
387
(
2005
).
45.
N.
Kapur
, “
A parametric study of direct gravure coating
,”
Chem. Eng. Sci.
58
,
2875
(
2003
).
46.
M. A.
Mendez
,
A.
Gosset
,
J. M.
Buchlin
, and
J.-M.
Buchlin
, “
Integral modeling of the jet wiping process. I. Introduction and self-similar formulation
,”
Technical Report No. TN216a
,
2018
.
47.
R. J.
LeVeque
,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
2002
).
48.
D.
Tseluiko
and
S.
Kalliadasis
, “
Nonlinear waves in counter-current gas–liquid film flow
,”
J. Fluid Mech.
673
,
19
(
2011
).
49.
G. F.
Dietze
and
C.
Ruyer-Quil
, “
Wavy liquid films in interaction with a confined laminar gas flow
,”
J. Fluid Mech.
722
,
348
(
2013
).
50.
F.
Denner
,
A.
Charogiannis
,
M.
Pradas
,
C. N.
Markides
,
B. G.
Van Wachem
, and
S.
Kalliadasis
, “
Solitary waves on falling liquid films in the inertia-dominated regime
,”
J. Fluid Mech.
837
,
491
(
2018
).
51.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors,
SciPy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
52.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
53.
S.
Márquez Damián
, “
An extended mixture model for the simultaneous treatment of short and long scale interfaces
,” Ph.D. thesis (
Universidad Nacional Del Litoral
,
2013
).
54.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
,
014016
(
2012
).
55.
C.
Ruyer-Quil
and
P.
Manneville
, “
Modeling film flows down inclined planes
,”
Eur. Phys. J. B
6
,
277
(
1998
).
56.
R.
Cimpeanu
,
S. N.
Gomes
, and
D. T.
Papageorgiou
, “
Active control of liquid film flows: Beyond reduced-order models
,”
Nonlinear Dyn.
104
,
267
287
(
2021
).
You do not currently have access to this content.