Thin liquid films are ubiquitous in nature and have many practical applications. From biological films to the curtain coating process, thin films are present in both large and small scales. Despite their importance, understanding the stability of these films remains a significant challenge due to the fluid–fluid interface that is free to deform, affected by interfacial tension and complex rheological behavior. Instabilities in thin films are often caused by van der Waals attractions, which can lead to the rupture of the layer. To investigate the rupture dynamics, numerical methods are commonly used, such as asymptotic derivations of the lubrication theory or interface tracking methods. In this paper, we present a computational study of the breakup dynamics of a stationary thin liquid sheet bounded by a passive gas with a viscous interface, using the arbitrary Lagrangian–Eulerian method and the Boussinesq–Scriven constitutive law to model the rheological behavior. Our results demonstrate that the stability of thin liquid films is influenced by both surface rheology and disjoining effects and that the viscous character of the interface can delay sheet breakup, leading to more stable films.

1.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
1198
(
2009
).
2.
M. A. Y.
Lam
,
L. J.
Cummings
, and
L.
Kondic
, “
Stability of thin fluid films characterised by a complex form of effective disjoining pressure
,”
J. Fluid Mech.
841
,
925
961
(
2018
).
3.
L.
Zhong
,
C. F.
Ketelaar
,
R. J.
Braun
,
C. G.
Begley
, and
P. E.
King-Smith
, “
Mathematical modelling of glob-driven tear film breakup
,”
Math. Med. Biol.
36
,
55
91
(
2019
).
4.
M.
Becerra
and
M. S.
Carvalho
, “
Stability of viscoelastic liquid curtain
,”
Chem. Eng. Process.: Process Intensif.
50
,
445
449
(
2011
).
5.
A.
Mohammad Karim
,
W. J.
Suszynski
,
W. B.
Griffith
,
S.
Pujari
,
L. F.
Francis
, and
M. S.
Carvalho
, “
Effect of viscoelasticity on stability of liquid curtain
,”
J. Non-Newtonian Fluid Mech.
257
,
83
94
(
2018
).
6.
M. S.
Bazzi
and
M. S.
Carvalho
, “
Effect of viscoelasticity on liquid sheet rupture
,”
J. Non-Newtonian Fluid Mech.
264
,
107
116
(
2019
).
7.
G.
Taylor
, “
The dynamics of thin sheets of fluid II. Waves on fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
296
312
(
1959
).
8.
D. R.
Brown
, “
A study of the behaviour of a thin sheet of moving liquid
,”
J. Fluid Mech.
10
,
297
305
(
1961
).
9.
A.
Sheludko
, “
Thin liquid films
,”
Adv. Colloid Interface Sci.
1
,
391
(
1967
).
10.
E.
Lifshitz
, “
The theory of molecular attractive forces between solids
,”
Perspect. Theor. Phys.
2
,
329
349
(
1956
).
11.
M. B.
Williams
and
S. H.
Davis
, “
Nonlinear theory of film rupture
,”
J. Colloid Interface Sci.
90
,
220
(
1982
).
12.
M.
Prévost
and
D.
Gallez
, “
Nonlinear rupture of thin free liquid films
,”
J. Chem. Phys.
84
,
4043
4048
(
1985
).
13.
T.
Erneux
and
S. H.
Davis
, “
Nonlinear rupture of free films
,”
Phys. Fluids A
5
,
1117
1122
(
1992
).
14.
M. P.
Ida
and
M. J.
Miksis
, “
Thin film rupture
,”
Appl. Math. Lett.
9
,
35
40
(
1996
).
15.
D.
Vaynblat
,
J. R.
Lister
, and
T. P.
Witelski
, “
Rupture of thin viscous films by van der Waals forces: Evolution and self-similarity
,”
Phys. Fluids
13
,
1130
1141
(
2001
).
16.
S. S.
Thete
,
C.
Anthony
,
O. A.
Basaran
, and
P.
Doshi
, “
Self-similar rupture of thin free films of power-law fluids
,”
Phys. Rev. E
92
,
023014
(
2015
).
17.
S.
Thete
,
C.
Anthony
,
M.
Harris
,
O.
Basaran
, and
P.
Doshi
, “
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
,”
Phys. Fluids
28
,
092101
(
2016
).
18.
D.
Hatziavramidis
, “
Stability of thin evaporating/condensing films in the presence of surfactants
,”
Technical Report No. 4
,
1992
.
19.
O. E.
Jensen
and
J. B.
Grotberg
, “
Insoluble surfactant spreading on a thin viscous film: Shock evolution and film rupture
,”
J. Fluid Mech.
240
,
259
288
(
1992
).
20.
A.
De Wit
,
D.
Gallez
, and
C. I.
Christov
, “
Nonlinear evolution equations for thin liquid films with insoluble surfactants
,”
Phys. Fluids
6
,
3256
3266
(
1994
).
21.
O. K.
Matar
, “
Nonlinear evolution of thin free viscous films in the presence of soluble surfactant
,”
Phys. Fluids
14
,
4216
4234
(
2002
).
22.
B.
Adeyemi
,
P.
Jadhawar
,
L.
Akanji
, and
V.
Barra
, “
Effects of fluid-fluid interfacial properties on the dynamics of bounded viscoelastic thin liquid films
,”
J. Non-Newtonian Fluid Mech.
309
,
104893
(
2022
).
23.
E.
Chatzigiannakis
,
N.
Jaensson
, and
J.
Vermant
, “
Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet
,”
Curr. Opin. Colloid Interface Sci.
53
,
101441
(
2021
).
24.
P. R. C.
Mendes Junior
,
I. R.
Siqueira
,
R. L.
Thompson
, and
M. S.
Carvalho
, “
Computational study of planar extrudate swell flows with a viscous liquid-gas interface
,”
AIChE J.
68
,
e17503
(
2022
).
25.
F. O.
Silva
,
I. R.
Siqueira
,
M. S.
Carvalho
, and
R. L.
Thompson
, “
Slot coating flows with a Boussinesq-Scriven viscous interface
,”
Phys. Fluids
35
,
042106
(
2023
).
26.
D. A.
Edwards
and
A.
Oron
, “
Instability of a non-wetting film with interfacial viscous stress
,”
J. Fluid Mech.
298
,
287
309
(
1995
).
27.
S.
Naire
,
R. J.
Braun
, and
S. A.
Snow
, “
An insoluble surfactant model for a vertical draining free film with variable surface viscosity
,”
Phys. Fluids
13
,
2492
2502
(
2001
).
28.
A.
Choudhury
,
V. K.
Paidi
,
S. K.
Kalpathy
, and
H. N.
Dixit
, “
Enhanced stability of free viscous films due to surface viscosity
,”
Phys. Fluids
32
,
082108
(
2020
).
29.
A. G.
González
,
J. A.
Diez
, and
M.
Sellier
, “
Inertial and dimensional effects on the instability of a thin film
,”
J. Fluid Mech.
787
,
449
473
(
2015
).
30.
L.
Kondic
,
A. G.
Gonzalez
,
J. A.
Diez
,
J. D.
Fowlkes
, and
P.
Rack
, “
Liquid-state dewetting of pulsed-laser-heated nanoscale metal films and other geometries
,”
Annu. Rev. Fluid Mech.
52
,
235
262
(
2020
).
31.
D.
Moreno-Boza
,
A.
Martínez-Calvo
, and
A.
Sevilla
, “
The role of inertia in the rupture of ultrathin liquid films
,”
Phys. Fluids
32
,
112114
(
2020
).
32.
L. E.
Scriven
, “
Dynamics of a fluid interface equation of motion for Newtonian surface fluids
,”
Chem. Eng. Sci.
12
,
98
108
(
1960
).
33.
J.
Donea
,
S.
Giuliani
, and
J. P.
Halleux
, “
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
(
1982
).
34.
J.
Donea
,
A.
Huerta
,
J.-Ph.
Ponthot
, and
A.
Rodríguez-Ferran
, “
Arbitrary Lagrangian-Eulerian methods
,” in
Encyclopedia of Computational Mechanics
(
Wiley
,
2004
), Vol.
1
, Chap. 14, pp.
413
437
.
35.
A. M.
Winslow
, “
Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh
,”
J. Comput. Phys.
1
,
149
172
(
1967
).
36.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewyt
, “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
,
215
(
1967
).
37.
A.
Logg
and
G. N.
Wells
, “
DOLFIN: Automated finite element computing
,”
ACM Trans. Math. Software
37
,
1
27
(
2010
).
38.
M. S.
Alnaes
,
J.
Blechta
,
J.
Hake
,
A.
Johansson
,
B.
Kehlet
,
A.
Logg
,
C.
Richardson
,
J.
Ring
,
E.
Rognes
, and
G. N.
Wells
, “
The FEniCS project version 1.5
,”
Arch. Num. Soft.
3
,
9
23
(
2015
).
You do not currently have access to this content.