This study conducts research on the viscoelastic properties of biological fluids, including both hyaluronic acid-containing lubricating eye drops and human tears, by means of passive microrheology. By tracking the Brownian motion of tracer particles of various sizes in the fluids, we were able to probe their viscoelastic properties. The results showed that the viscoelastic properties of artificial tears, such as Newtonian viscosity and relaxation time, scale to the concentration and macromolecular size of hyaluronic acid, resembling unentangled semidiluted solutions. Moreover, human tears were found to have a viscosity that is 50% greater than that of pure water, comparable to artificial tears containing 0.1% hyaluronic acid, but with a relaxation time one order of magnitude longer than ophthalmic solutions. This behavior was attributed to their intricate composition. The distinctive aspect of this study lies in demonstrating the feasibility of measuring the rheological properties of human tears, a biofluid of great interest, using extremely small sample volumes and microrheology, providing comprehensive information across a wide range of frequencies approaching those corresponding to blinking upon the application of the Cox–Merz rule. These findings are of significant value as they pave the way for future research on small volumes of tears from ophthalmic patients.

1.
T. G.
Mason
and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
(
7
),
1250
1253
(
1995
).
2.
B. R.
Dasgupta
,
S.-Y.
Tee
,
J. C.
Crocker
,
B. J.
Frisken
, and
D. A.
Weitz
, “
Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering
,”
Phys. Rev. E
65
(
5
),
051505
(
2002
).
3.
J. H.
van Zanten
,
S.
Amin
, and
A. A.
Abdala
, “
Brownian motion of colloidal spheres in aqueous PEO solutions
,”
Macromolecules
37
(
10
),
3874
3880
(
2004
).
4.
A.
Papagiannopoulos
,
C. M.
Fernyhough
, and
T. A.
Waigh
, “
The microrheology of polystyrene sulfonate combs in aqueous solution
,”
J. Chem. Phys.
123
(
21
),
214904
(
2005
).
5.
F. K.
Oppong
and
J. R.
de Bruyn
, “
Microrheology and dynamics of an associative polymer
,”
Eur. Phys. J. E
31
(
1
),
25
35
(
2010
).
6.
A. A.
Abdala
,
S.
Amin
,
J. H.
van Zanten
, and
S. A.
Khan
, “
Tracer microrheology study of a hydrophobically modified comblike associative polymer
,”
Langmuir
31
(
13
),
3944
3951
(
2015
).
7.
A.
Espasa-Valdepeñas
,
J. F.
Vega
,
V.
Cruz
,
J.
Ramos
,
A. J.
Müller
, and
J.
Martinez-Salazar
, “
Revisiting polymer–particle interaction in PEO solutions
,”
Langmuir
37
(
13
),
3808
3816
(
2021
).
8.
A.
Matsumoto
,
C.
Zhang
,
F.
Scheffold
, and
A. Q.
Shen
, “
Microrheological approach for probing the entanglement properties of polyelectrolyte solutions
,”
ACS Macro Lett.
11
(
1
),
84
90
(
2022
).
9.
J.
Xu
,
V.
Viasnoff
, and
D.
Wirtz
, “
Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy
,”
Rheol Acta
37
(
4
),
387
398
(
1998
).
10.
J.
Xu
,
A.
Palmer
, and
D.
Wirtz
, “
Rheology and microrheology of semiflexible polymer solutions: Actin filament networks
,”
Macromolecules
31
(
19
),
6486
6492
(
1998
).
11.
K.
Rufener
,
A.
Palmer
,
J.
Xu
, and
D.
Wirtz
, “
High-frequency dynamics and microrheology of macromolecular solutions probed by diffusing wave spectroscopy: The case of concentrated solutions of F-actin
,”
J. Non-Newtonian Fluid Mech.
82
(
2
),
303
314
(
1999
).
12.
T.
Gisler
and
D. A.
Weitz
, “
Scaling of the microrheology of semidilute F-actin solutions
,”
Phys. Rev. Lett.
82
(
7
),
1606
1609
(
1999
).
13.
A.
Palmer
,
T. G.
Mason
,
J.
Xu
,
S. C.
Kuo
, and
D.
Wirtz
, “
Diffusing wave spectroscopy microrheology of actin filament networks
,”
Biophys. J.
76
(
2
),
1063
1071
(
1999
).
14.
D. N.
Pinder
,
A. J.
Swanson
,
P.
Hebraud
, and
Y.
Hemar
, “
Micro-rheological investigation of dextran solutions using diffusing wave spectroscopy
,”
Food Hydrocolloids
20
(
2
),
240
244
(
2006
).
15.
Y.-Q.
Chen
,
P.
Chou
,
C.-Y.
Cheng
,
C.-C.
Chiang
,
M.-T.
Wei
,
C.-T.
Chuang
,
Y.-L. S.
Chen
, and
A.
Chiou
, “
Microrheology of human synovial fluid of arthritis patients studied by diffusing wave spectroscopy
,”
J. Biophotonics
5
(
10
),
777
784
(
2012
).
16.
C.
Oelschlaeger
,
M.
Cota Pinto Coelho
, and
N.
Willenbacher
, “
Chain flexibility and dynamics of polysaccharide hyaluronan in entangled solutions: A high frequency rheology and diffusing wave spectroscopy study
,”
Biomacromolecules
14
(
10
),
3689
3696
(
2013
).
17.
F.
Del Giudice
,
M.
Tassieri
,
C.
Oelschlaeger
, and
A. Q.
Shen
, “
When microrheology, bulk rheology, and microfluidics meet: Broadband rheology of hydroxyethyl cellulose water solutions
,”
Macromolecules
50
(
7
),
2951
2963
(
2017
).
18.
Z.
Xing
,
A.
Caciagli
,
T.
Cao
,
I.
Stoev
,
M.
Zupkauskas
,
T.
O'Neill
,
T.
Wenzel
,
R.
Lamboll
,
D.
Liu
, and
E.
Eiser
, “
Microrheology of DNA hydrogels
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
32
),
8137
8142
(
2018
).
19.
B.
Medronho
,
A.
Filipe
,
C.
Costa
,
A.
Romano
,
B.
Lindman
,
H.
Edlund
, and
M.
Norgren
, “
Microrheology of novel cellulose stabilized oil-in-water emulsions
,”
J. Colloid Interface Sci.
531
,
225
232
(
2018
).
20.
B.
Maciel
,
C.
Oelschlaeger
, and
N.
Willenbacher
, “
Chain flexibility and dynamics of alginate solutions in different solvents
,”
Colloid Polym. Sci.
298
(
7
),
791
801
(
2020
).
21.
G.
Nisato
,
P.
Hébraud
,
J.-P.
Munch
, and
S. J.
Candau
, “
Diffusing-wave-spectroscopy investigation of latex particle motion in polymer gels
,”
Phys. Rev. E
61
(
3
),
2879
2887
(
2000
).
22.
T.
Narita
,
A.
Knaebel
,
J.-P.
Munch
, and
S. J.
Candau
, “
Microrheology of poly(vinyl alcohol) aqueous solutions and chemically cross-linked gels
,”
Macromolecules
34
(
23
),
8224
8231
(
2001
).
23.
T.
Narita
,
A.
Knaebel
,
J.-P.
Munch
,
M.
Zrínyi
, and
S. J.
Candau
, “
Microrheology of chemically crosslinked polymer gels by diffusing-wave spectroscopy
,”
Macromol. Symp.
207
(
1
),
17
30
(
2004
).
24.
B. R.
Dasgupta
and
D. A.
Weitz
, “
Microrheology of cross-linked polyacrylamide networks
,”
Phys. Rev. E
71
(
2
),
021504
(
2005
).
25.
N.
Yang
,
J. L.
Hutter
, and
J. R.
de Bruyn
, “
Microrheology, microstructure, and aging of physically cross-linked poly(vinyl alcohol)/poly(ethylene glycol) blends
,”
J. Rheol.
56
(
4
),
797
822
(
2012
).
26.
T.
Narita
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hébraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
(
10
),
4174
4183
(
2013
).
27.
H. F.
Mahjoub
,
M.
Zammali
,
C.
Abbes
, and
T.
Othman
, “
Microrheological study of PVA/borax physical gels: Effect of chain length and elastic reinforcement by sodium hydroxide addition
,”
J. Mol. Liq.
291
,
111272
(
2019
).
28.
B. A.
Krajina
,
C.
Tropini
,
A.
Zhu
,
P.
DiGiacomo
,
J. L.
Sonnenburg
,
S. C.
Heilshorn
, and
A. J.
Spakowitz
, “
Dynamic light scattering microrheology reveals multiscale viscoelasticity of polymer gels and precious biological materials
,”
ACS Cent. Sci.
3
(
12
),
1294
1303
(
2017
).
29.
P. C.
Cai
,
B. A.
Krajina
,
M. J.
Kratochvil
,
L.
Zou
,
A.
Zhu
,
E. B.
Burgener
,
P. L.
Bollyky
,
C. E.
Milla
,
M. J.
Webber
,
A. J.
Spakowitz
, and
S. C.
Heilshorn
, “
Dynamic light scattering microrheology for soft and living materials
,”
Soft Matter
17
(
7
),
1929
1939
(
2021
).
30.
M.
Dogru
,
M.
Nakamura
,
J.
Shimazaki
, and
K.
Tsubota
, “
Changing trends in the treatment of dry-eye disease
,”
Expert Opin. Invest. Drugs
22
(
12
),
1581
1601
(
2013
).
31.
S. A.
Arshinoff
,
I.
Hofmann
, and
H.
Nae
, “
Role of rheology in tears and artificial tears
,”
J. Cataract Refract. Surg.
47
(
5
),
655
(
2021
).
32.
D.
Schmidl
,
L.
Schmetterer
,
K. J.
Witkowska
,
A.
Unterhuber
,
V.
Aranha dos Santos
,
S.
Kaya
,
J.
Nepp
,
C.
Baar
,
P.
Rosner
,
R. M.
Werkmeister
, and
G.
Garhofer
, “
Tear film thickness after treatment with artificial tears in patients with moderate dry eye disease
,”
Cornea
34
(
4
),
421
(
2015
).
33.
A.
Dodero
,
R.
Williams
,
S.
Gagliardi
,
S.
Vicini
,
M.
Alloisio
, and
M.
Castellano
, “
A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid
,”
Carbohydr. Polym.
203
,
349
355
(
2019
).
34.
J. M.
Tiffany
, “
The viscosity of human tears
,”
Int. Ophthalmol.
15
(
6
),
371
376
(
1991
).
35.
J. C.
Pandit
,
B.
Naguová
,
A. J.
Bron
, and
J. M.
Tiffany
, “
Physical properties of stimulated and unstimulated tears
,”
Exp. Eye Res.
68
(
2
),
247
253
(
1999
).
36.
S. M.
Gouveia
and
J. M.
Tiffany
, “
Human tear viscosity: An interactive role for proteins and lipids
,”
Biochim. Biophys. Acta, Proteins Proteomics
1753
(
2
),
155
163
(
2005
).
37.
H.
Zhu
and
A.
Chauhan
, “
Effect of viscosity on tear drainage and ocular residence time
,”
Optom. Vision Sci.
85
(
8
),
E715
E725
(
2008
).
38.
A.
Prashar
,
Shed Tears for Diagnostics
(
Springer
,
Singapore
,
2019
).
39.
A.
Recchioni
,
E.
Mocciardini
,
E.
Ponzini
, and
S.
Tavazzi
, “
Viscoelastic properties of the human tear film
,”
Exp. Eye Res.
219
,
109083
(
2022
).
40.
J.
Soria
,
J. A.
Durán
,
J.
Etxebarria
,
J.
Merayo
,
N.
González
,
R.
Reigada
,
I.
García
,
A.
Acera
, and
T.
Suárez
, “
Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction
,”
J. Proteomics
78
,
94
112
(
2013
).
41.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light, Scattering: With Applications to Chemistry, Biology, and Physics
(
Dover Publications Inc
.,
Mineola, NY
,
2000
).
42.
J.
Kestin
,
M.
Sokolov
, and
W. A.
Wakeham
, “
Viscosity of liquid water in the range −8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
7
(
3
),
941
948
(
1978
).
43.
A.
La Gatta
,
M.
De Rosa
,
I.
Marzaioli
,
T.
Busico
, and
C.
Schiraldi
, “
A complete hyaluronan hydrodynamic characterization using a size exclusion chromatography–triple detector array system during in vitro enzymatic degradation
,”
Anal. Biochem.
404
(
1
),
21
29
(
2010
).
44.
J.
Xiao
,
X.
Chen
,
Q.
Zhan
,
L.
Zhong
,
Q.
Hu
, and
L.
Zhao
, “
Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide
,”
Ultrason. Sonochem.
82
,
105901
(
2022
).
45.
J.
Su
and
A.
Cavaco-Paulo
, “
Effect of ultrasound on protein functionality
,”
Ultrason. Sonochem.
76
,
105653
(
2021
).
46.
Y. A.
Albarkah
,
R. J.
Green
, and
V. V.
Khutoryanskiy
, “
Probing the mucoadhesive interactions between porcine gastric mucin and some water-soluble polymers
,”
Macromol. Biosci.
15
(
11
),
1546
1553
(
2015
).
47.
T. G.
Mason
,
K.
Ganesan
,
J. H.
van Zanten
,
D.
Wirtz
, and
S. C.
Kuo
, “
Particle tracking microrheology of complex fluids
,”
Phys. Rev. Lett.
79
(
17
),
3282
3285
(
1997
).
48.
T. M.
Squires
and
T. G.
Mason
, “
Fluid mechanics of microrheology
,”
Annu. Rev. Fluid Mech.
42
(
1
),
413
438
(
2010
).
49.
T. G.
Mason
, “
Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation
,”
Rheol. Acta
39
(
4
),
371
378
(
2000
).
50.
A. U.
Oza
and
D. C.
Venerus
, “
The dynamics of parallel-plate and cone–plate flows
,”
Phys. Fluids
33
(
2
),
023102
(
2021
).
51.
P. R. S.
Mendes
,
A. A.
Alicke
, and
R. L.
Thompson
, “
Parallel-plate geometry correction for transient rheometric experiments
,”
Appl. Rheol.
24
(
5
),
52721
(
2014
).
52.
A.
Einstein
, “
Über die von der molekularkinetischen theorie der wärme geforderte Bewegung von in ruhenden flüssigkeiten suspendierten teilchen
,”
Ann. Phys.
322
(
8
),
549
560
(
1905
).
53.
L.-H.
Cai
,
S.
Panyukov
, and
M.
Rubinstein
, “
Mobility of nonsticky nanoparticles in polymer liquids
,”
Macromolecules
44
(
19
),
7853
7863
(
2011
).
54.
F.
Babaye Khorasani
,
R.
Poling-Skutvik
,
R.
Krishnamoorti
, and
J. C.
Conrad
, “
Mobility of nanoparticles in semidilute polyelectrolyte solutions
,”
Macromolecules
47
(
15
),
5328
5333
(
2014
).
55.
R.
Poling-Skutvik
,
R.
Krishnamoorti
, and
J. C.
Conrad
, “
Size-dependent dynamics of nanoparticles in unentangled polyelectrolyte solutions
,”
ACS Macro Lett.
4
(
10
),
1169
1173
(
2015
).
56.
T.
Indei
and
T.
Narita
, “
Microrheological study of single chain dynamics in semidilute entangled flexible polymer solutions: Crossover from Rouse to Zimm modes
,”
J. Rheol.
66
(
6
),
1165
1179
(
2022
).
57.
E. C.
Cooper
,
P.
Johnson
, and
A. M.
Donald
, “
Probe diffusion in polymer solutions in the dilute/semi-dilute crossover regime: 1. Poly(ethylene oxide)
,”
Polymer
32
(
15
),
2815
2822
(
1991
).
58.
A. V.
Dobrynin
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
(
6
),
1859
1871
(
1995
).
59.
W. P.
Cox
and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
(
118
),
619
622
(
1958
).
60.
M. G.
Doane
, “
Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink
,”
Am. J. Ophthalmol.
89
(
4
),
507
516
(
1980
).
61.
P. E.
King-Smith
,
B. A.
Fink
,
N.
Fogt
,
K. K.
Nichols
,
R. M.
Hill
, and
G. S.
Wilson
, “
The thickness of the human precorneal tear film: evidence from reflection spectra
,”
Invest. Ophthalmol. Vision Sci.
41
(
11
),
3348
3359
(
2000
).
62.
M. M.
Cross
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
(
5
),
417
437
(
1965
).
63.
M. M.
Cross
, “
Analysis of flow data on molten polymers
,”
Eur. Polym. J.
2
(
3
),
299
307
(
1966
).
64.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
Ithaca
,
1953
).
65.
J. R.
Prakash
, “
Universal dynamics of dilute and semidilute solutions of flexible linear polymers
,”
Curr. Opin. Colloid Interface Sci.
43
,
63
79
(
2019
).
66.
R. H.
Colby
, “
Structure and linear viscoelasticity of flexible polymer solutions: Comparison of polyelectrolyte and neutral polymer solutions
,”
Rheol. Acta
49
(
5
),
425
442
(
2010
).
67.
N. B.
Wyatt
,
C. M.
Gunther
, and
M. W.
Liberatore
, “
Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt
,”
Polymer (Guildf.)
52
(
11
),
2437
2444
(
2011
).
68.
M. W.
Donnelly
,
M.
Hailemichael
, and
M. W.
Liberatore
, “
Altering the viscosity of cationically modified cellulose polymers by the addition of salt
,”
J. Appl. Polym. Sci.
132
(
11
),
41616
(
2015
).
69.
P.
Aragona
,
P. A.
Simmons
,
H.
Wang
, and
T.
Wang
, “
Physicochemical properties of hyaluronic acid–based lubricant eye drops
,”
Transl. Vis. Sci. Technol.
8
(
6
),
2
(
2019
).

Supplementary Material

You do not currently have access to this content.