We study the wetting behaviors of aqueous NaCl and NaNO3 electrolyte nano-droplets on graphite surfaces by molecular dynamics simulations. Despite the same ion charge and similar Stokes radii, while the contact angle increases with NaCl concentration up to 3 M, the contact angle decreases with NaNO3 concentration up to 3 M. We show that while the liquid/vapor surface tension increases with both NaCl and NaNO3 concentrations, the solid/liquid interfacial tension varies with NaCl and NaNO3 concentrations oppositely. The Cl ions are depleted from the first dense water layer at the graphite/water interface, leading to an increasing interfacial tension and an increasing contact angle with ion concentration. Beyond 3 M NaCl, the ionic double layer at the interface counteracts the depletion of ions at the immediate graphite/water interface. Therefore, the contact angle saturates beyond around 3 M NaCl. By contrast, the planar NO3 ions are adsorbed in the dense water layer at the immediate graphite/water interfaces, conform to the interface, and form excessive hydrogen bonds with water at the interface. Consequently, the interfacial tension is decreased with increasing NaNO3 concentrations, leading to a decreasing contact angle up to around 3 M NaNO3. At NaNO3 concentrations beyond 3 M, the interfacial tension no longer decreases, likely due to the saturation of NO3 in the dense region; therefore, the contact angle slightly increases with NaNO3 concentration due to the increasing liquid/vapor surface tension. Our research sheds light on the mechanisms of the effect of ion shape and concentration on droplet wetting on solids.

1.
X.
Shi
,
V.
Sharma
,
D.
Cantu-Crouch
,
G.
Yao
,
K.
Fukazawa
,
K.
Ishihara
, and
J. Y.
Wu
, “
Nanoscaled morphology and mechanical properties of a biomimetic polymer surface on a silicone hydrogel contact lens
,”
Langmuir
37
(
47
),
13961
13967
(
2021
).
2.
Z.
Wang
,
C.-C.
Chang
,
S.-J.
Hong
,
Y.-J.
Sheng
, and
H.-K.
Tsao
, “
Capillary rise in a microchannel of arbitrary shape and wettability: Hysteresis loop
,”
Langmuir
28
(
49
),
16917
16926
(
2012
).
3.
S.
Kulinich
and
M.
Farzaneh
, “
How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces
,”
Langmuir
25
(
16
),
8854
8856
(
2009
).
4.
L.
Kong
,
E.
Palacios
,
X.
Guan
,
M.
Shen
, and
X.
Liu
, “
Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes
,”
J. Membr. Sci.
658
,
120645
(
2022
).
5.
T.
Young
, “
III. An essay on the cohesion of fluids
,”
Philos. Trans. R. Soc.
95
,
65
87
(
1805
).
6.
E. W.
Washburn
,
C.
Hull
, and
C. J.
West
,
International Critical Tables of Numerical Data, Physics, Chemistry and Technology
(
National Research Council
,
1926
).
7.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
(
2
),
739
(
2009
).
8.
N.
Sghaier
,
M.
Prat
, and
S. B.
Nasrallah
, “
On the influence of sodium chloride concentration on equilibrium contact angle
,”
Chem. Eng. J.
122
(
1–2
),
47
53
(
2006
).
9.
E.
Al-Zaidi
and
X.
Fan
, “
Effect of aqueous electrolyte concentration and valency on contact angle on flat glass surfaces and inside capillary glass tubes
,”
Colloids Surf., A
543
,
1
8
(
2018
).
10.
C.
Wagner
, “
The surface tension of dilute solutions of electrolytes
,”
Phys. Z.
25
,
474
477
(
1924
).
11.
L.
Onsager
and
N. N.
Samaras
, “
The surface tension of Debye–Hückel electrolytes
,”
J. Chem. Phys.
2
(
8
),
528
536
(
1934
).
12.
N.
Matubayasi
,
H.
Matsuo
,
K.
Yamamoto
,
S.-I.
Yamaguchi
, and
A.
Matuzawa
, “
Thermodynamic quantities of surface formation of aqueous electrolyte solutions: I. aqueous solutions of NaCl, MgCl2, and LaCl3
,”
J. Colloid Interface Sci.
209
(
2
),
398
402
(
1999
).
13.
N.
Matubayasi
and
R.
Yoshikawa
, “
Thermodynamic quantities of surface formation of aqueous electrolyte solutions: VII. Aqueous solution of alkali metal nitrates LiNO3, NaNO3, and KNO3
,”
J. Colloid Interface Sci.
315
(
2
),
597
600
(
2007
).
14.
J.
Qin
,
D.
Priftis
,
R.
Farina
,
S. L.
Perry
,
L.
Leon
,
J.
Whitmer
,
K.
Hoffmann
,
M.
Tirrell
, and
J. J.
De Pablo
, “
Interfacial tension of polyelectrolyte complex coacervate phases
,”
ACS Macro Lett.
3
(
6
),
565
568
(
2014
).
15.
D.
Bhatt
,
J.
Newman
, and
C.
Radke
, “
Molecular dynamics simulations of surface tensions of aqueous electrolytic solutions
,”
J. Phys. Chem. B
108
(
26
),
9077
9084
(
2004
).
16.
B. S.
Lee
,
Y. S.
Chi
,
J. K.
Lee
,
I. S.
Choi
,
C. E.
Song
,
S. K.
Namgoong
, and
S.-G.
Lee
, “
Imidazolium ion-terminated self-assembled monolayers on Au: Effects of counteranions on surface wettability
,”
J. Am. Chem. Soc.
126
(
2
),
480
481
(
2004
).
17.
Y.
Levin
,
A. P.
Dos Santos
, and
A.
Diehl
, “
Ions at the air–water interface: An end to a hundred-year-old mystery?
,”
Phys. Rev. Lett.
103
(
25
),
257802
(
2009
).
18.
Y.
Levin
and
A. P.
dos Santos
, “
Ions at hydrophobic interfaces
,”
J. Phys. Condens. Matter
26
(
20
),
203101
(
2014
).
19.
A. P.
dos Santos
,
A.
Diehl
, and
Y.
Levin
, “
Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions
,”
Langmuir
26
(
13
),
10778
10783
(
2010
).
20.
A. P.
Dos Santos
and
Y.
Levin
, “
Ion specificity and the theory of stability of colloidal suspensions
,”
Phys. Rev. Lett.
106
(
16
),
167801
(
2011
).
21.
A. P.
dos Santos
and
Y.
Levin
, “
Ions at the water–oil interface: Interfacial tension of electrolyte solutions
,”
Langmuir
28
(
2
),
1304
1308
(
2012
).
22.
P.
Jungwirth
and
D. J.
Tobias
, “Ions at the air/water interface,”
J. Phys. Chem. B
106
(
25
),
6361
6373
(
2002
).
23.
P.
Jungwirth
and
D. J.
Tobias
, “
Specific ion effects at the air/water interface
,”
Chem. Rev.
106
(
4
),
1259
1281
(
2006
).
24.
Z.
Li
,
Y.
Wang
,
A.
Kozbial
,
G.
Shenoy
,
F.
Zhou
,
R.
McGinley
,
P.
Ireland
,
B.
Morganstein
,
A.
Kunkel
, and
S. P.
Surwade
, “
Effect of airborne contaminants on the wettability of supported graphene and graphite
,”
Nat. Mater.
12
(
10
),
925
931
(
2013
).
25.
R.
Godawat
,
S. N.
Jamadagni
, and
S.
Garde
, “
Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations
,”
Proc. Natl. Acad. Sci.
106
(
36
),
15119
15124
(
2009
).
26.
L.
Fan
,
R.
Ma
,
Q.
Zhang
,
X.
Jia
, and
B.
Lu
, “
Graphite anode for a potassium‐ion battery with unprecedented performance
,”
Angew. Chem.
131
(
31
),
10610
10615
(
2019
).
27.
P.
Chomkhuntod
,
P.
Iamprasertkun
,
P.
Chiochan
,
P.
Suktha
, and
M.
Sawangphruk
, “
Scalable 18,650 aqueous-based supercapacitors using hydrophobicity concept of anti-corrosion graphite passivation layer
,”
Sci. Rep.
11
(
1
),
13082
(
2021
).
28.
L. F.
de Lima
,
A. L.
Ferreira
,
M. D.
Torres
,
W. R.
de Araujo
, and
C.
de la Fuente-Nunez
, “
Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes
,”
Proc. Natl. Acad. Sci.
118
(
30
),
e2106724118
(
2021
).
29.
E.
Bird
and
Z.
Liang
, “
Nanobubble capillary force between parallel plates
,”
Phys. Fluids
34
(
1
),
013301
(
2022
).
30.
M.
Gholinejad
,
A.
Jabari Moghadam
,
D.-T.
Phan
,
A. K.
Miri
, and
S. A.
Mousavi Shaegh
, “
Design and application of ion concentration polarization for preconcentrating charged analytes
,”
Phys. Fluids
33
(
5
),
051301
(
2021
).
31.
J. C.
Phillips
,
D. J.
Hardy
,
J. D.
Maia
,
J. E.
Stone
,
J. V.
Ribeiro
,
R. C.
Bernardi
,
R.
Buch
,
G.
Fiorin
,
J.
Hénin
, and
W.
Jiang
, “
Scalable molecular dynamics on CPU and GPU architectures with NAMD
,”
J. Chem. Phys.
153
(
4
),
044130
(
2020
).
32.
E.
Nightingale
, Jr.
, “
Phenomenological theory of ion solvation. Effective radii of hydrated ions
,”
J. Phys. Chem.
63
(
9
),
1381
1387
(
1959
).
33.
A.
Singh
,
J.
Li
,
X.
Jiang
,
J. P.
Hernández-Ortiz
,
H. M.
Jaeger
, and
J. J.
de Pablo
, “
Shape induced segregation and anomalous particle transport under spherical confinement
,”
Phys. Fluids
32
(
5
),
053307
(
2020
).
34.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
(
19
),
8577
8593
(
1995
).
35.
H.
Berendsen
,
J.
Grigera
, and
T.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
36.
S.
Weerasinghe
and
P. E.
Smith
, “
A Kirkwood–Buff derived force field for sodium chloride in water
,”
J. Chem. Phys.
119
(
21
),
11342
11349
(
2003
).
37.
L. A.
Richards
,
A. I.
Schäfer
,
B. S.
Richards
, and
B.
Corry
, “
The importance of dehydration in determining ion transport in narrow pores
,”
Small
8
(
11
),
1701
1709
(
2012
).
38.
B. R.
Brooks
,
C. L.
Brooks
, III
,
A. D.
Mackerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
, and
S.
Boresch
, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
(
10
),
1545
1614
(
2009
).
39.
J.
Rafiee
,
X.
Mi
,
H.
Gullapalli
,
A. V.
Thomas
,
F.
Yavari
,
Y. F.
Shi
,
P. M.
Ajayan
, and
N. A.
Koratkar
, “
Wetting transparency of graphene
,”
Nat. Mater.
11
(
3
),
217
222
(
2012
).
40.
M.
Bhandarkar
,
A.
Bhatele
,
E.
Bohm
,
R.
Brunner
,
F.
Buelens
,
C.
Chipot
,
A.
Dalke
,
S.
Dixit
,
G.
Fiorin
,
P.
Freddolino
,
P.
Grayson
,
J.
Gullingsrud
,
A.
Gursoy
,
D.
Hardy
,
C.
Harrison
,
J.
Hénin
,
W.
Humphrey
,
D.
Hurwitz
,
N.
Krawetz
,
S.
Kumar
,
D.
Kunzman
,
J.
Lai
,
C.
Lee
,
R.
McGreevy
,
C.
Mei
,
M.
Nelson
,
J.
Phillips
,
O.
Sarood
,
A.
Shinozaki
,
D.
Tanner
,
D.
Wells
,
G.
Zheng
, and
F.
Zhu
, “NAMD User's Guide,” Version 2.10 (2015), Sec. 5.1.2; see https://www.ks.uiuc.edu/Research/namd/2.10/ug/ug.html.
41.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
42.
M.
Shen
,
P. K.
Schelling
, and
P.
Keblinski
, “
Heat transfer mechanism across few-layer graphene by molecular dynamics
,”
Phys. Rev. B
88
(
4
),
045444
(
2013
).
43.
D. C.
Malaspina
and
J.
Faraudo
, “
Computer simulations of the interaction between SARS-CoV-2 spike glycoprotein and different surfaces
,”
Biointerphases
15
(
5
),
051008
(
2020
).
44.
N.
Wei
,
C.
Lv
, and
Z.
Xu
, “
Wetting of graphene oxide: A molecular dynamics study
,”
Langmuir
30
(
12
),
3572
3578
(
2014
).
45.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
(
3
),
338
343
(
1949
).
46.
J.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
(
6
),
817
829
(
1950
).
47.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Effect of surface polarity on water contact angle and interfacial hydration structure
,”
J. Phys. Chem. B
111
(
32
),
9581
9587
(
2007
).
48.
T.
Werder
,
J. H.
Walther
,
R.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water−carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
(
6
),
1345
1352
(
2003
).
49.
P.-G.
De Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
2004
).
50.
A.
Kozbial
,
F.
Zhou
,
Z.
Li
,
H.
Liu
, and
L.
Li
, “
Are graphitic surfaces hydrophobic?
,”
Acc. Chem. Res.
49
(
12
),
2765
2773
(
2016
).
51.
A.
Kozbial
,
C.
Trouba
,
H.
Liu
, and
L.
Li
, “
Characterization of the intrinsic water wettability of graphite using contact angle measurements: Effect of defects on static and dynamic contact angles
,”
Langmuir
33
(
4
),
959
967
(
2017
).
52.
N.
Giovambattista
,
A. B.
Almeida
,
A. M.
Alencar
, and
S. V.
Buldyrev
, “
Validation of capillarity theory at the nanometer scale by atomistic computer simulations of water droplets and bridges in contact with hydrophobic and hydrophilic surfaces
,”
J. Phys. Chem. C
120
(
3
),
1597
1608
(
2016
).
53.
J.
Alejandre
,
D. J.
Tildesley
, and
G. A.
Chapela
, “
Molecular dynamics simulation of the orthobaric densities and surface tension of water
,”
J. Chem. Phys.
102
(
11
),
4574
4583
(
1995
).
54.
G.
Jones
and
W. A.
Ray
, “
The surface tension of solutions of electrolytes as a function of the concentration. I. A differential method for measuring relative surface tension
,”
J. Am. Chem. Soc.
59
(
1
),
187
198
(
1937
).
55.
A.
Akaishi
,
T.
Yonemaru
, and
J.
Nakamura
, “
Formation of water layers on graphene surfaces
,”
ACS Omega
2
(
5
),
2184
2190
(
2017
).
56.
S.
Bhattacharjee
and
S.
Khan
, “
The wetting behavior of aqueous imidazolium based ionic liquids: A molecular dynamics study
,”
Phys. Chem. Chem. Phys.
22
(
16
),
8595
8605
(
2020
).
57.
G. N.
Lewis
and
M.
Randall
,
Thermodynamics
(
Krishna Prakashan Media
,
1963
).
58.
M. R.
Wright
,
An Introduction to Aqueous Electrolyte Solutions
(
John Wiley & Sons
,
2007
).
59.
Y.
Jing
,
V.
Jadhao
,
J. W.
Zwanikken
, and
M.
Olvera de la Cruz
, “
Ionic structure in liquids confined by dielectric interfaces
,”
J. Chem. Phys.
143
(
19
),
194508
(
2015
).
60.
Y.
Levin
, “
Interfacial tension of electrolyte solutions
,”
J. Chem. Phys.
113
(
21
),
9722
9726
(
2000
).
61.
T.
Wehling
,
E.
Şaşıoğlu
,
C.
Friedrich
,
A.
Lichtenstein
,
M.
Katsnelson
, and
S.
Blügel
, “
Strength of effective coulomb interactions in graphene and graphite
,”
Phys. Rev. Lett.
106
(
23
),
236805
(
2011
).
62.
G.
Shi
,
J.
Liu
,
C.
Wang
,
B.
Song
,
Y.
Tu
,
J.
Hu
, and
H.
Fang
, “
Ion enrichment on the hydrophobic carbon-based surface in aqueous salt solutions due to cation-π interactions
,”
Sci. Rep.
3
(
1
),
3436
(
2013
).
63.
E.
Verwey
and
K.
Niessen
, “
XL. The electrical double layer at the interface of two liquids
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
28
(
189
),
435
446
(
1939
).
64.
O. J.
Lanning
and
P. A.
Madden
, “
Screening at a charged surface by a molten salt
,”
J. Phys. Chem. B
108
(
30
),
11069
11072
(
2004
).
65.
A. A.
Kornyshev
, “
Double-layer in ionic liquids: Paradigm change
,”
J. Phys. Chem. B
111
(
20
),
5545
5557
(
2007
).
66.
Y.
Li
,
M.
Girard
,
M.
Shen
,
J. A.
Millan
, and
M. O.
de la Cruz
, “
Strong attractions and repulsions mediated by monovalent salts
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
45
),
11838
11843
(
2017
).
67.
D. R.
Scheff
,
K. L.
Weirich
,
K.
Dasbiswas
,
A.
Patel
,
S.
Vaikuntanathan
, and
M. L.
Gardel
, “
Tuning shape and internal structure of protein droplets via biopolymer filaments
,”
Soft Matter
16
(
24
),
5659
5668
(
2020
).
68.
R.
Zhang
,
S. A.
Redford
,
P. V.
Ruijgrok
,
N.
Kumar
,
A.
Mozaffari
,
S.
Zemsky
,
A. R.
Dinner
,
V.
Vitelli
,
Z.
Bryant
, and
M. L.
Gardel
, “
Spatiotemporal control of liquid crystal structure and dynamics through activity patterning
,”
Nat. Mater.
20
(
6
),
875
882
(
2021
).
69.
E.
Bordes
,
L.
Douce
,
E. L.
Quitevis
,
A. A.
Pádua
, and
M.
Costa Gomes
, “
Ionic liquids at the surface of graphite: Wettability and structure
,”
J. Chem. Phys.
148
(
19
),
193840
(
2018
).
70.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
(
6560
),
55
57
(
1996
).
71.
C.
Sendner
,
D.
Horinek
,
L.
Bocquet
, and
R. R.
Netz
, “
Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion
,”
Langmuir
25
(
18
),
10768
10781
(
2009
).
72.
H.
Huinink
,
L.
Pel
, and
M. A. J.
Michels
, “
How ions distribute in a drying porous medium: A simple model
,”
Phys. Fluids
14
(
4
),
1389
1395
(
2002
).

Supplementary Material

You do not currently have access to this content.