Heat transfer in supercritical carbon dioxide (sCO2) is experimentally visualized, and a measurement method is proposed for evaluating the transport phenomena in near-critical, liquid-like, and gas-like conditions. There are various uses for sCO2 in engineering applications, such as abstraction, material processing, and soil remediation. However, the heat and mass transfer under supercritical conditions have not been fully revealed, and innovative measurement techniques with higher spatial and temporal resolutions are required. This study focuses on the evaluation of heat transfer in sCO2 using a high-speed phase-shifting interferometer. The density distribution of sCO2 under different temperature and pressure conditions is successfully visualized with the proposed interferometer. Characteristics of the density field patterns are observed near the critical point and in liquid-like and gas-like conditions. It is demonstrated that the sensitivity of the density (i.e., refractive index) to temperature changes is different for each condition. The transient heat transfer under gas-like condition is evaluated by the interferometer, and numerical simulations with 3D model are performed to evaluate the experimental results. Finally, the interference fringes pattern obtained by the interferometer is shown to be qualitatively in good agreement with the numerical temperature field change. Additionally, transient variations of optical path length difference obtained in the experiment, which means apparent temperature distribution, were compared with numerical simulations. Experimental results are quantitatively in good agreement with the numerical results under a thermal diffusivity of order 10−8 m2/s, confirming the feasibility of the proposed measurement technique for the transient heat transfer in sCO2.

1.
D.
Sondari
,
T. T.
Irawadi
,
D.
Setyaningsih
, and
S.
Tursiloadi
, “
Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe
,”
AIP Conf. Proc.
1904
,
020047
(
2017
).
2.
L.
Lin
,
Y.
Lee
, and
H. E.
Park
, “
Recycling and rheology of poly(lactic acid) (PLA) to make foams using supercritical fluid
,”
Phys. Fluids
33
,
067119
(
2021
).
3.
L.
Chen
,
Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems
(
IGI Global
,
USA
,
2021
).
4.
L.
Chen
,
J.
Hasanov
,
J.
Chen
,
Y.
Feng
,
Y.
Kanda
, and
A.
Komiya
, “
Supercritical fluid remediation for soil contaminants: Mechanisms, parameter optimization and pilot systems
,”
J. Supercrit. Fluids
189
,
105718
(
2022
).
5.
NIST Standard Reference Database-REFPROP
, Version 9.1,
2013
.
6.
L.
Chen
,
R.
Zhang
,
Y.
Kanda
,
D. N.
Basu
,
A.
Komiya
, and
H.
Chen
, “
Asymptotic analysis of boundary thermal-wave process near the liquid–gas critical point
,”
Phys. Fluids
34
,
036102
(
2022
).
7.
H.
Park
and
Y. W.
Lee
, “
Measurement of diffusivity in supercritical carbon dioxide via particle dissolution method
,”
J. Supercrit. Fluids
192
,
105812
(
2023
).
8.
B. L.
Deng
,
Y.
Kanda
,
L.
Chen
,
J.
Okajima
,
A.
Komiya
, and
S.
Maruyama
, “
Visualization study of supercritical fluid convection and heat transfer in weightlessness by interferometry: A brief review
,”
Microgravity Sci. Technol.
29
(
4
),
275
295
(
2017
).
9.
D.
Malacara
,
Optical Shop Testing
,
3rd ed.
(
Wiley
,
2007
).
10.
Y.
Kanda
,
E.
Shoji
,
L.
Chen
,
J.
Okajima
,
A.
Komiya
, and
S.
Maruyama
, “
Measurement of transient heat transfer in vicinity of gas–liquid interface using high-speed phase-shifting interferometer
,”
Int. Commun. Heat Mass Transfer
89
,
57
63
(
2017
).
11.
D.
Beysens
,
T.
Frohlich
, and
Y.
Garrabos
, “
Heat can cool near-critical fluids
,”
Phys. Rev. E
84
,
051201
(
2011
).
12.
D.
Yang
,
L.
Chen
,
Y.
Kanda
,
A.
Komiya
, and
H.
Chen
, “
Quantitative visualization of injection jet flow behaviors of transcritical and supercritical processes by pixelated phase-shifting interferometer
,”
Exp. Therm. Fluid Sci.
139
,
110729
(
2022
).
13.
Y.
Zhang
,
L.
Chen
,
Q.
Wu
,
D.
Yang
,
Y.
Kanda
,
J.
Zang
,
A.
Komiya
, and
Y.
Huang
, “
Preliminary measurements of transient boundary heat transfer process under supercritical pressures using pixelated phase-shifting interferometry
,”
Int. Commun. Heat Mass Transfer
138
,
106396
(
2022
).
14.
M.
Ohnishi
,
S.
Yoshihara
,
M.
Sakurai
,
Y.
Miura
,
M.
Ishikawa
,
H.
Kobayshi
,
T.
Takenouchi
,
J.
Kawai
,
K.
Honda
, and
M.
Matsumoto
, “
Ultra-sensitive high-speed density measurement of the ‘piston effect’ in a critical fluid
,”
Microgravity Sci. Technol.
16
,
306
310
(
2005
).
15.
Y.
Miura
,
S.
Yoshihara
,
M.
Ohnishi
,
K.
Honda
,
M.
Matsumoto
,
J.
Kawai
,
M.
Ishikawa
,
H.
Kobayashi
, and
A.
Onuki
, “
High-speed observation of the piston effect near the gas–liquid critical point
,”
Phys. Rev. E
74
(
1
),
010101
(
2006
).
16.
E.
Shoji
,
A.
Komiya
,
J.
Okajima
,
H.
Kawamura
, and
S.
Maruyama
, “
High-speed phase-shifting interferometry using triangular prism for time-resolved temperature measurement
,”
Appl. Opt.
54
(
20
),
6297
6304
(
2015
).
17.
Y.
Kanda
,
H.
Komatsu
,
J.
Okajima
,
S.
Maruyama
, and
A.
Komiya
, “
Evaluation of rate-determining step of methane hydrate decomposition by measurement of transient heat and mass transfer near solid–gas interface
,”
Int. J. Heat Mass Transfer
149
,
119191
(
2020
).
18.
L. V.
Lorenz
, “
Experimentale og theoretiske undersϕgelser over legemernes brydningsforhold
,”
Det kongelige danske Videnskabernes Selskabs Skrifter
8
(
5
),
203
248
(
1869
).
19.
H. A.
Lorentz
, “
Concerning the relation between the velocity of propagation of light and the density and composition of media
,” in
Collected Papers
, edited by
H. A.
Lorenz
(
Martinus Nijhoff The 635 Hague
,
1936
), Vol.
2
, pp. 
1
119
.
20.
H.
Tang
,
E.
Gulari
, and
E. W.
Rothe
, “
Large mirage effect in supercritical CO2
,”
J. Supercrit. Fluids
18
,
193
200
(
2000
).
21.
N.
Cerqueira
and
S.
Menecier
, “
Optical refractivity in Ar–CO2, plasmas at λ = 632.8 nm
,”
Opt. Commun.
431
,
14
18
(
2019
).
You do not currently have access to this content.