This paper deals with a problem of asymptotic step-like solutions of the Burgers equation with variable coefficients and a small parameter. By means of the nonlinear Wentzel–Kramers–Brillouin method, the algorithm of constructing these asymptotic solutions is proposed and statements on justification of the algorithm are proved. The obtained results are illustrated by an example, for which the first asymptotic step-like approximation is explicitly found. The asymptotic solution is global and has a form of the shock wave type function. There are also given graphs of these approximate solutions for certain numerical parameters.

1.
D. S.
Zhang
,
G. W.
Wei
,
D. J.
Kour
, and
D. K.
Hoffman
, “
Burgers' equation with high Reynolds number
,”
Phys. Fluids
9
,
1853
1855
(
1997
).
2.
Y.
Gu
,
S.
Malmir
,
J.
Manafian
,
O. A.
Ilhan
,
A.
Alizadeh
, and
A. J.
Othman
, “
Variety interaction between k-lump and k-kink solutions for the (3 + 1)-D Burgers system by bilinear analysis
,”
Results Phys.
43
,
106032
(
2022
).
3.
J.
Qi
and
Q.
Zhu
, “
Further results about the non-traveling wave exact solutions of nonlinear Burgers equation with variable coefficients
,”
Results Phys.
46
,
106285
(
2023
).
4.
S. K.
Mohanty
,
S.
Kumar
,
A. N.
Dev
,
M. K.
Deka
,
D. V.
Churikov
, and
O. V.
Kravchenko
, “
An efficient technique of G / G–expansion method for modified KdV and Burgers equations with variable coefficients
,”
Results Phys.
37
,
105504
(
2022
).
5.
T.
Tatsumi
, “
Nonlinear wave expansion for turbulence in the Burgers' model of a fluid
,”
Phys. Fluids
12
,
II-258
II-264
(
1969
).
6.
L. I.
Sedov
,
Mechanics of Continuous Media
, Series in Theoretical and Applied Mechanics (
World Scientific
,
1997
), Vol.
2
.
7.
X.
Ao
,
G. P.
Zank
,
N. V.
Pogorelov
, and
D.
Shaikh
, “
Interaction of a thin shock with turbulence. I. Effect on shock structure: Analytic model
,”
Phys. Fluids
20
,
127102
(
2008
).
8.
A. R.
Forsyth
,
Theory of Differential Equations, Part IV, Partial Differential Equations
(
Cambridge University Press
,
1906
), Vol.
VI
.
9.
H.
Bateman
, “
Some recent researchers on the motion of fluids
,”
Mon. Weather Rev.
43
,
163
170
(
1915
).
10.
J. M.
Burgers
, “
Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion
,”
Kon. Ned. Akad. Wet., Verh. (Eerste Sectie)
17
(
2
),
1
53
(
1939
).
11.
J. M.
Burgers
,
Application of a Model System to Illustrate Some Points of the Statistical Theory of Free Turbulence
(
North-Holland Publishing
,
1940
).
12.
J. M.
Burgers
, “
Mathematical model illustrating the theory of turbulence
,”
Adv. Appl. Mech.
1
,
171
199
(
1948
).
13.
E.
Hopf
, “
The partial differential equation
u t + u u x = μ u x x,”
Commun. Pure Appl. Math.
3
,
201
230
(
1950
).
14.
R. Z.
Sagdeev
,
D. A.
Usikov
, and
G. M.
Zaslavsky
,
Nonlinear Physics: From the Pendulum to Turbulence and Chaos
(
Harwood Academic Publishers
,
1988
).
15.
V.
Samoilenko
,
Yu.
Samoilenko
, and
L.
Vovk
, “
Existence of quickly decreasing solutions to the first order linear partial differential equation
,”
Comput. Algebra Syst. Teach. Res.
IX
,
162
174
(
2021
).
16.
J. D.
Cole
, “
On a quasilinear parabolic equation occurring in aerodynamics
,”
Q. Appl. Math.
9
,
225
236
(
1951
).
17.
M. J.
Ablowitz
,
Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons
(
Cambridge University Press
,
2011
).
18.
G.
Wentzel
, “
Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik
,”
Z. Phys.
38
,
518
529
(
1926
).
19.
H. A.
Kramers
, “
Wellenmechanik und halbzahlige Quantisierung
,”
Z. Phys.
39
,
828
840
(
1926
).
20.
L. N.
Brillouin
, “
Remarques sur la mécanique ondulatoire
,”
J. Phys. Radium
7
,
353
368
(
1926
).
21.
R. M.
Miura
and
M.
Kruskal
, “
Application of nonlinear WKB-method to the KdV equation
,”
SIAM J. Appl. Math.
26
,
376
395
(
1974
).
22.
V. P.
Maslov
and
G. A.
Omel'yanov
,
Geometric Asymptotics for PDE
(
American Mathematical Society
,
2001
).
23.
V.
Samoilenko
and
Yu.
Samoilenko
, “
Asymptotic expansions for one-phase soliton-type solutions of the Korteweg-de Vries equation with variable coefficients
,”
Ukr. Math. J.
57
,
132
148
(
2005
).
24.
V.
Samoilenko
and
Yu.
Samoilenko
, “
Asymptotic soliton like solutions to the singularly perturbed Benjamin–Bona–Mahony equation with variable coefficients
,”
J. Math. Phys.
60
,
011501
(
2019
).
25.
N. N.
Bogoliubov
and
Yu. A.
Mitropolsky
,
Asymptotic Methods in the Theory of Nonlinear Oscillations
(
Gordon and Breach
,
1961
).
26.
A. H.
Nayfeh
,
Introduction to Perturbation Techniques
(
John Wiley
,
1981
).
27.
M.
Amar
,
J.
Matias
,
M.
Morandotti
, and
E.
Zappale
, “
Periodic homogenization in the context of structured deformations
,”
Z. Angew. Math. Phys.
73
,
173
(
2022
).
28.
V. H.
Samoilenko
,
Yu. I.
Samoilenko
,
V. O.
Limarchenko
,
V. S.
Vovk
, and
K. S.
Zaitseva
, “
Asymptotic solutions of soliton type to the Korteweg–de Vries equation with singular perturbation and variable coefficients
,”
Math. Model. Comput.
6
,
374
386
(
2019
).
29.
O. A.
Pocheketa
and
R. O.
Popovych
, “
Reduction operators and exact solutions of generalized Burgers equations
,”
Phys. Lett. A
376
,
2847
2850
(
2012
).
30.
S.
Opanasenko
,
A.
Bihlo
, and
R. O.
Popovych
, “
Equivalence groupoid and group classification of a class of variable-coefficient Burgers equations
,”
J. Math. Anal. Appl.
491
,
124215
(
2020
).
31.
S. I.
Lyashko
,
V.
Samoilenko
,
Yu.
Samoilenko
, and
N. I.
Lyashko
, “
Asymptotic analysis of the Korteweg-de Vries equation by the nonlinear WKB technique
,”
Math. Model. Comput.
8
,
368
378
(
2021
).
You do not currently have access to this content.