Tsunamis generated by underwater volcanic eruptions are physically modeled in a large three-dimensional wave basin. A unique pneumatic volcanic tsunami generator (VTG) was deployed at the bottom of the wave basin to generate volcanic tsunamis with repeatable source parameters under controlled physical conditions. The volcanic Froude number defined with the VTG eruption velocity and water depth allows to physically model real-world events from slow mud-volcanoes to explosive eruptions. The VTG generates radial N-waves with prescribed vertical stroke motions in the wave basin. Initial three-dimensional water surfaces are reconstructed for the daylighting scenarios. Smooth dome shapes are observed during the submarine volcanic eruption and tsunami wave generation, which is followed by a trough formation at the source. A concentric vertical spike is observed for a specific range of water depths, which is generated by superposition of an inward propagating circular bore on top of the wave generator. The spike can be clustered with different ranges of a dimensionless VTG parameter. With an increasing dimensionless parameter, the spike pattern transitions through three distinct categories: smooth spike, rough spike, and splash spike. The dimensionless spike height and the dimensionless vertical velocity of the spike tip are dependent on the dimensionless VTG parameters. The maximum values of the dimensionless spike height and spike tip velocity are observed in the rough spike regime among all tested experimental scenarios.

1.
Behrens
,
J.
and
Dias
,
F.
, “
New computational methods in tsunami science
,”
Philos. Trans. R. Soc., A
373
(
2053
),
20140382
(
2015
).
2.
Borrero
,
J. C.
,
Cronin
,
S. J.
,
Latu'ila
,
F. H.
,
Tukuafu
,
P.
,
Heni
,
N.
,
Tupou
,
A. M.
,
Kula
,
T.
,
Fa'anunu
,
O.
,
Bosserelle
,
C.
, and
Lane
,
E.
, “
Tsunami runup and inundation in Tonga from the January 2022 eruption of Hunga Volcano
,”
Pure Appl. Geophys.
180
,
1
22
(
2023
).
3.
Borrero
,
J. C.
,
Solihuddin
,
T.
,
Fritz
,
H. M.
,
Lynett
,
P. J.
,
Prasetya
,
G. S.
,
Skanavis
,
V.
,
Husrin
,
S.
,
Kongko
,
W.
,
Istiyanto
,
D. C.
, and
Daulat
,
A.
, “
Field survey and numerical modelling of the December 22, 2018 Anak Krakatau Tsunami
,”
Pure Appl. Geophys.
177
,
2457
2475
(
2020
).
4.
Chwang
,
A. T.
and
Wu
,
T. Y.
, “
Cylindrical solitary waves
,” in
Waves on Water of Variable Depth
(
Springer
,
1977
), pp.
80
90
.
5.
Duchemin
,
L.
,
Popinet
,
S.
,
Josserand
,
C.
, and
Zaleski
,
S.
, “
Jet formation in bubbles bursting at a free surface
,”
Phys. Fluids
14
(
9
),
3000
3008
(
2002
).
6.
Enet
,
F.
and
Grilli
,
S. T.
, “
Experimental study of tsunami generation by three-dimensional rigid underwater landslides
,”
J. Waterway, Port, Coastal, Ocean Eng.
133
(
6
),
442
454
(
2007
).
7.
Fincham
,
A.
and
Delerce
,
G.
, “
Advanced optimization of correlation imaging velocimetry algorithms
,”
Exp. Fluids
29
(
Suppl 1
),
S013
S022
(
2000
).
8.
Fritz
,
H. M.
, “
Initial phase of landslide generated impulse waves
,” Doctoral dissertation (
ETH Zurich
,
2002
).
9.
Fritz
,
H. M.
,
Hager
,
W. H.
, and
Minor
,
H.-E.
, “
Landslide generated impulse waves. 1. Instantaneous flow fields
,”
Exp. Fluids
35
(
6
),
505
519
(
2003a
).
10.
Fritz
,
H. M.
,
Hager
,
W. H.
, and
Minor
,
H.-E.
, “
Landslide generated impulse waves. 2. Hydrodynamic impact craters
,”
Exp. Fluids
35
(
6
),
520
532
(
2003b
).
11.
Fritz
,
H. M.
,
Hager
,
W. H.
, and
Minor
,
H.-E.
, “
Near field characteristics of landslide generated impulse waves
,”
J. Waterway, Port, Coastal, Ocean Eng.
130
(
6
),
287
302
(
2004
).
12.
Fritz
,
H. M.
,
Mohammed
,
F.
, and
Yoo
,
J.
, “
Lituya Bay landslide impact generated mega-tsunami 50 th anniversary
,” in
Tsunami Science Four Years after the 2004 Indian Ocean Tsunami
(
Springer
,
2009
), pp.
153
175
.
13.
Garcia
,
D.
,
Orteu
,
J.-J.
, and
Penazzi
,
L.
, “
A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: Application to sheet metal forming
,”
J. Mater. Process. Technol.
125–126
,
736
742
(
2002
).
14.
Gekle
,
S.
and
Gordillo
,
J. M.
, “
Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation
,”
J. Fluid Mech.
663
,
293
330
(
2010
).
15.
Ghabache
,
É.
,
Séon
,
T.
, and
Antkowiak
,
A.
, “
Liquid jet eruption from hollow relaxation
,”
J. Fluid Mech.
761
,
206
219
(
2014
).
16.
Hammack
,
J. L.
and
Segur
,
H.
, “
The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments
,”
J. Fluid Mech.
65
(
2
),
289
314
(
1974
).
17.
Huang
,
J.
,
Wang
,
G.
,
Wang
,
Y.
,
Wang
,
J.
, and
Yao
,
Z.
, “
Effect of contact angles on dynamical characteristics of the annular focused jet between parallel plates
,”
Phys. Fluids
34
(
5
),
052107
(
2022
).
18.
Hwang
,
C.-H.
,
Wang
,
W.-C.
, and
Chen
,
Y.-H.
, “
Camera calibration and 3D surface reconstruction for multi-camera semi-circular DIC system
,” in
International Conference on Optics in Precision Engineering and Nanotechnology
,
Singapore
,
2013
.
19.
Jamin
,
T.
,
Gordillo
,
L.
,
Ruiz-Chavarría
,
G.
,
Berhanu
,
M.
, and
Falcon
,
E.
, “
Experiments on generation of surface waves by an underwater moving bottom
,”
Proc. R. Soc. A
471
(
2178
),
20150069
(
2015
).
20.
Kim
,
G.-B.
,
Cheng
,
W.
,
Sunny
,
R. C.
,
Horrillo
,
J. J.
,
McFall
,
B. C.
,
Mohammed
,
F.
,
Fritz
,
H. M.
,
Beget
,
J.
, and
Kowalik
,
Z.
, “
Three dimensional landslide generated tsunamis: Numerical and physical model comparisons
,”
Landslides
17
,
1145
1161
(
2020
).
21.
Latter
,
J.
, “
Tsunamis of volcanic origin: Summary of causes, with particular reference to Krakatoa, 1883
,”
Bull. Volcanol.
44
(
3
),
467
490
(
1981
).
22.
Law
,
L.
and
Brebner
,
A.
, “
On water waves generated by landslides
,”
Proceedings of the Third Australasian Conference on Hydraulics and Fluid Mechanics
, (Australia Inst. of Eng.,
1968
), pp.
155
159
.
23.
Le Méhauté
,
B.
and
Wang
,
S.
,
Water Waves Generated by Underwater Explosion
(
World Scientific Publishing Company
,
1996
).
24.
Liu
,
P. L.-F.
,
Wang
,
X.
, and
Salisbury
,
A. J.
, “
Tsunami hazard and early warning system in South China Sea
,”
J. Asian Earth Sci.
36
(
1
),
2
12
(
2009
).
25.
Longuet-Higgins
,
M. S.
, “
Bubbles, breaking waves and hyperbolic jets at a free surface
,”
J. Fluid Mech.
127
,
103
121
(
1983
).
26.
Mack
,
L. R.
, “
Periodic, finite‐amplitude, axisymmetric gravity waves
,”
J. Geophys. Res.
67
(
2
),
829
843
, https://doi.org/10.1029/JZ067i002p00829 (
1962
).
27.
McAllister
,
M.
,
Draycott
,
S.
,
Davey
,
T.
,
Yang
,
Y.
,
Adcock
,
T.
,
Liao
,
S.
, and
Van Den Bremer
,
T.
, “
Wave breaking and jet formation on axisymmetric surface gravity waves
,”
J. Fluid Mech.
935
,
A5
(
2022
).
28.
McFall
,
B. C.
and
Fritz
,
H. M.
, “
Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes
,”
Proc. R Soc. A
472
(
2188
),
20160052
(
2016
).
29.
McFall
,
B. C.
and
Fritz
,
H. M.
, “
Runup of granular landslide‐generated tsunamis on planar coasts and conical islands
,”
J. Geophys. Res. Oceans
122
(
8
),
6901
6922
(
2017
).
30.
McFall
,
B. C.
,
Mohammed
,
F.
,
Fritz
,
H. M.
, and
Liu
,
Y.
, “
Laboratory experiments on three-dimensional deformable granular landslides on planar and conical slopes
,”
Landslides
15
(
9
),
1713
1730
(
2018
).
31.
Mohammed
,
F.
and
Fritz
,
H. M.
, “
Physical modeling of tsunamis generated by three‐dimensional deformable granular landslides
,”
J. Geophys. Res.
117
(
C11
), C11015, https://doi.org/10.1029/2011JC007850 (
2012
).
32.
Nie
,
B.
,
Guan
,
X.
,
Vanden-Broeck
,
J.-M.
, and
Dias
,
F.
, “
Air/water interfacial waves with a droplet at the tip of their crest
,”
Phys. Fluids
35
(
1
),
012101
(
2023
).
33.
Paris
,
R.
, “
Source mechanisms of volcanic tsunamis
,”
Philos. Trans. R Soc., A
373
(
2053
),
20140380
(
2015
).
34.
Scarano
,
F.
and
Riethmuller
,
M. L.
, “
Advances in iterative multigrid PIV image processing
,”
Exp. Fluids
29
(
Suppl 1
),
S051
S060
(
2000
).
35.
Shen
,
Y.
,
Whittaker
,
C. N.
,
Lane
,
E. M.
,
White
,
J. D.
,
Power
,
W.
, and
Nomikou
,
P.
, “
Laboratory experiments on tsunamigenic discrete subaqueous volcanic eruptions. Part 2: Properties of generated waves
,”
J. Geophys. Res.
126
(
5
),
e2020JC016587
, https://doi.org/10.1029/2020JC016587 (
2021
).
36.
Shimozono
,
T.
, “
Kernel representation of long-wave dynamics on a uniform slope
,”
Proc. R. Soc. A
476
(
2241
),
20200333
(
2020
).
37.
Sigurdsson
,
H.
,
Houghton
,
B.
,
McNutt
,
S.
,
Rymer
,
H.
, and
Stix
,
J.
,
The Encyclopedia of Volcanoes
(
Elsevier
,
2015
).
38.
Simkin
,
T.
,
Krakatau, 1883: The Volcanic Eruption and Its Effects
(
Smithsonian Institution Press
,
1983
).
39.
Singh
,
D.
and
Das
,
A. K.
, “
Dynamics of inner gas during the bursting of a bubble at the free surface
,”
Phys. Fluids
33
(
5
),
052105
(
2021
).
40.
Syamsidik
,
Benazir
,
Luthfi
,
M.
,
Suppasri
,
A.
, and
Comfort
,
L. K.
, “
The 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: Tsunami and damage characteristics
,”
Nat. Hazards Earth Syst. Sci.
20
(
2
),
549
565
(
2020
).
41.
Taraki
,
N.
and
Said Ismail
,
A.
, “
The role of geometry on controlled cavity collapse and top jet drop
,”
Phys. Fluids
34
(
7
),
072103
(
2022
).
42.
Watts
,
P.
, “
Water waves generated by underwater landslides
,” Doctoral dissertation (
California Institute of Technology
,
1997
).
43.
Watts
,
P.
, “
Tsunami features of solid block underwater landslides
,”
J. Waterway, Port, Coastal, Ocean Eng.
126
(
3
),
144
152
(
2000
).
44.
Wei
,
Y.
,
Fritz
,
H. M.
,
Titov
,
V. V.
,
Uslu
,
B.
,
Chamberlin
,
C.
, and
Kalligeris
,
N.
, “
Source models and near-field impact of the 1 April 2007 Solomon Islands tsunami
,”
Pure Appl. Geophys.
172
,
657
682
(
2015
).
45.
Weiss
,
R.
,
Fritz
,
H. M.
, and
Wünnemann
,
K.
, “
Hybrid modeling of the mega‐tsunami runup in Lituya Bay after half a century
,”
Geophys. Res. Lett.
36
(
9
),
L09602
, https://doi.org/10.1029/2009GL037814 (
2009
).
46.
Westerweel
,
J.
, “
Fundamentals of digital particle image velocimetry
,”
Meas. Sci. Technol.
8
(
12
),
1379
1392
(
1997
).
47.
Yeh
,
H. H.
,
Liu
,
P. L.-F.
, and
Synolakis
,
C.
,
Advanced Numerical Models for Simulating Tsunami Waves and Runup
(
World Scientific Publishing Company
,
2008
).
You do not currently have access to this content.