This article exploits the interaction dynamics of the elastic oceanic crust with the underlying mush complexes (MC) to constrain the axial topography of mid-ocean ridges (MORs). The effective viscosity (μeff) of MC beneath MORs is recognized as the crucial factor in modulating their axial high vs flat topography. Based on a two-step viscosity calculation (suspension and solid-melt mixture rheology), we provide a theoretical estimate of μeff as a function of melt suspension characteristics (crystal content, polymodality, polydispersity, and strain rate) and its volume fraction in the MC region. We then develop a numerical model to show the control of μeff on the axial topography. Using an enthalpy-porosity-based fluid formulation of uppermost mantle, the model implements a one-way fluidstructure interaction that transmits viscous forces of the MC region to the overlying upper crust. The limiting non-rifted topographic elevations (−0.06–1.27 km) of model MORs are found to occur in the viscosity range of μeff = 1012–1014 Pa s. The higher end (1013–1014) Pa s of this spectrum produces axial highs, which are replaced by flat or slightly negative topography as μ eff 5 × 10 12 Pa s. We discuss a number of major natural MORs to validate the model findings.

1.
C.
Small
, “
Global systematics of mid-ocean ridge morphology
,” in
Faulting and Magmatism at Mid-Ocean Ridges
(
American Geophysical Union (AGU)
,
1998
), pp.
1
25
.
2.
J. M.
Sinton
and
R. S.
Detrick
, “
Mid-ocean ridge magma chambers
,”
J. Geophys. Res.: Solid Earth
97
,
197
216
, https://doi.org/10.1029/91JB02508 (
1992
).
3.
N.
Mandal
,
S.
Sarkar
,
A.
Baruah
, and
U.
Dutta
, “
Production, pathways and budgets of melts in mid-ocean ridges: An enthalpy based thermo-mechanical model
,”
Phys. Earth Planet. Inter.
277
,
55
69
(
2018
).
4.
W. R.
Buck
,
L. L.
Lavier
, and
A. N. B.
Poliakov
, “
Modes of faulting at mid-ocean ridges
,”
Nature
434
,
719
723
(
2005
).
5.
S. M.
Carbotte
,
D. K.
Smith
,
M.
Cannat
, and
E. M.
Klein
, “
Tectonic and magmatic segmentation of the global ocean ridge system: A synthesis of observations
,”
Geol. Soc. London Spec. Publ.
420
,
249
295
(
2016
).
6.
H.
Jian
,
S. C.
Singh
,
Y. J.
Chen
, and
J.
Li
, “
Evidence of an axial magma chamber beneath the ultraslow-spreading southwest indian ridge
,”
Geology
45
,
143
146
(
2017
).
7.
Z.
Liu
and
W. R.
Buck
, “
Magmatic controls on axial relief and faulting at mid-ocean ridges
,”
Earth Planet. Sci. Lett.
491
,
226
237
(
2018
).
8.
F.
Martinez
,
R.
Hey
, and
Á.
Höskuldsson
, “
Reykjanes ridge evolution: Effects of plate kinematics, small-scale upper mantle convection and a regional mantle gradient
,”
Earth-Sci. Rev.
206
,
102956
(
2020
).
9.
W. R.
Buck
, “
Accretional curvature of lithosphere at magmatic spreading centers and the flexural support of axial highs
,”
J. Geophys. Res.: Solid Earth
106
,
3953
3960
, https://doi.org/10.1029/2000JB900360 (
2001
).
10.
D. S.
Wilson
, “
Focused mantle upwelling beneath mid-ocean ridges: Evidence from seamount formation and isostatic compensation of topography
,”
Earth Planet. Sci. Lett.
113
,
41
55
(
1992
).
11.
M. A.
Eberle
and
D. W.
Forsyth
, “
An alternative, dynamic model of the axial topographic high at fast spreading ridges
,”
J. Geophys. Res.: Solid Earth
103
,
12309
12320
, https://doi.org/10.1029/98JB00437 (
1998
).
12.
J. P.
Morgan
,
E. M.
Parmentier
, and
J.
Lin
, “
Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreting plate boundaries
,”
J. Geophys. Res.
92
,
12823
, https://doi.org/10.1029/JB092iB12p12823 (
1987
).
13.
N. H.
Sleep
and
B. R.
Rosendahl
, “
Topography and tectonics of mid-oceanic ridge axes
,”
J. Geophys. Res.: Solid Earth
84
,
6831
6839
, https://doi.org/10.1029/JB084iB12p06831 (
1979
).
14.
E.
Choi
and
W. R.
Buck
, “
Constraints on shallow mantle viscosity from morphology and deformation of fast-spreading ridges
,”
Geophys. Res. Lett.
37
,
L16302
, https://doi.org/10.1029/2010GL043681 (
2010
).
15.
R. S. J.
Sparks
,
C.
Annen
,
J. D.
Blundy
,
K. V.
Cashman
,
A. C.
Rust
, and
M. D.
Jackson
, “
Formation and dynamics of magma reservoirs
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
377
,
20180019
(
2019
).
16.
M.
Edmonds
,
K. V.
Cashman
,
M.
Holness
, and
M.
Jackson
, “
Architecture and dynamics of magma reservoirs
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
377
,
20180298
(
2019
).
17.
S. M.
Carbotte
,
A.
Arnulf
,
M.
Spiegelman
,
M.
Lee
,
A.
Harding
,
G.
Kent
,
J. P.
Canales
, and
M.
Nedimović
, “
Stacked sills forming a deep melt-mush feeder conduit beneath axial seamount
,”
Geology
48
,
693
697
(
2020
).
18.
S. M.
Carbotte
,
M.
Marjanović
,
A. F.
Arnulf
,
M. R.
Nedimović
,
J. P.
Canales
, and
G. M.
Arnoux
, “
Stacked magma lenses beneath mid-ocean ridges: Insights from new seismic observations and synthesis with prior geophysical and geologic findings
,”
J. Geophys. Res.: Solid Earth
126
,
e2020JB021434
, https://doi.org/10.1029/2020JB021434 (
2021
).
19.
Y.-Q.
Wong
and
T.
Keller
, “
A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems
,”
Geophys. J. Int.
233
,
769
795
(
2023
).
20.
S.
Sarkar
,
A.
Baruah
,
U.
Dutta
, and
N.
Mandal
, “
Role of random thermal perturbations in the magmatic segmentation of mid-oceanic ridges: Insights from numerical simulations
,”
Tectonophysics
636
,
83
99
(
2014
).
21.
S. C.
Singh
,
W. C.
Crawford
,
H.
Carton
,
T.
Seher
,
V.
Combier
,
M.
Cannat
,
J. P.
Canales
,
D.
Düsünür
,
J.
Escartin
, and
J. M.
Miranda
, “
Discovery of a magma chamber and faults beneath a mid-atlantic ridge hydrothermal field
,”
Nature
442
,
1029
1032
(
2006
).
22.
A.
Einstein
, “
A new determination of molecular dimensions
,”
Ann. Phys.
324
,
289
306
(
1906
).
23.
J.
Guo
,
Q.
Zhou
, and
R. C.-K.
Wong
, “
Effects of volume fraction and particle shape on the rheological properties of oblate spheroid suspensions
,”
Phys. Fluids
33
,
081703
(
2021
).
24.
É.
Guazzelli
and
O.
Pouliquen
, “
Rheology of dense granular suspensions
,”
J. Fluid Mech.
852
,
P1
(
2018
).
25.
J. J.
Stickel
and
R. L.
Powell
, “
Fluid mechanics and rheology of dense suspensions
,”
Annu. Rev. Fluid Mech.
37
,
129
149
(
2005
).
26.
M.
Braun
, “
The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges
,”
Earth Planet. Sci. Lett.
176
,
339
356
(
2000
).
27.
G.
Hirth
and
D.
Kohlstedt
, “
Rheology of the upper mantle and the mantle wedge: A view from the experimentalists
,”
Geophys. Monograph-American Geophys. Union
138
,
83
106
(
2003
).
28.
P. B.
Kelemen
,
M.
Braun
, and
G.
Hirth
, “
Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: Observations from the ingalls and oman ophiolites
,”
Geochem. Geophys. Geosyst.
1
,
1005
(
2000
).
29.
M. G.
Worster
,
S.
Peppin
, and
J. S.
Wettlaufer
, “
Colloidal mushy layers
,”
J. Fluid Mech.
914
,
A28
(
2021
).
30.
D.
Alexandrov
and
A.
Malygin
, “
Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection
,”
Int. J. Heat Mass Transfer
55
,
3196
3204
(
2012
).
31.
R.
Lohner
,
J.
Cebral
,
C.
Yang
,
J. D.
Baum
,
E.
Mestreau
,
C.
Charman
, and
D.
Pelessone
, “
Large-scale fluid-structure interaction simulations
,” C
omput. Sci. Eng.
6
,
27
37
(
2004
).
32.
C. A.
Figueroa
,
I. E.
Vignon-Clementel
,
K. E.
Jansen
,
T. J.
Hughes
, and C.
A.
Taylor
, “
A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
,”
Comput. Methods Appl. Mech. Eng.
195
,
5685
5706
(
2006
).
33.
M. A.
Fernández
and
M.
Moubachir
, “
A Newton method using exact jacobians for solving fluid–structure coupling
,”
Comput. Struct.
83
,
127
142
(
2005
).
34.
S.
Badia
,
F.
Nobile
, and
C.
Vergara
, “
Fluid-structure partitioned procedures based on Robin transmission conditions
,”
J. Comput. Phys.
227
,
7027
7051
(
2008
).
35.
F.
Nobile
and
C.
Vergara
, “
An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions
,”
SIAM J. Sci. Comput.
30
,
731
763
(
2008
).
36.
Y.
Bazilevs
,
V. M.
Calo
,
T. J. R.
Hughes
, and
Y.
Zhang
, “
Isogeometric fluid-structure interaction: Theory, algorithms, and computations
,”
Comput. Mech.
43
,
3
37
(
2008
).
37.
F.-K.
Benra
,
H. J.
Dohmen
,
J.
Pei
,
S.
Schuster
, and
B.
Wan
, “
A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions
,”
J. Appl. Math.
2011
,
853560
.
38.
G.
Hou
,
J.
Wang
, and
A.
Layton
, “
Numerical methods for fluid-structure interaction—A review
,”
Commun. Comput. Phys.
12
,
337
377
(
2012
).
39.
R.
Moretti
and
M.
Errera
, “
Comparison between Dirichlet-Robin and Neumann-Robin interface conditions in CHT problems
,” in
Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer
(
2018
).
40.
X.
Wang
,
K.
Kamrin
, and
C. H.
Rycroft
, “
An incompressible Eulerian method for fluid–structure interaction with mixed soft and rigid solids
,”
Phys. Fluids
34
,
033604
(
2022
).
41.
T.
Spenke
,
M.
Make
, and
N.
Hosters
, “
A Robin-Neumann scheme with quasi-Newton acceleration for partitioned fluid-structure interaction
,”
Int. J. Numer. Methods Eng.
124
,
979
997
(
2023
).
42.
G. M.
Arnoux
,
D. R.
Toomey
,
E. E. E.
Hooft
, and
W. S. D.
Wilcock
, “
Seismic imaging and physical properties of the endeavour segment: Evidence that skew between mantle and crustal magmatic systems governs spreading center processes
,”
Geochem. Geophys. Geosyst.
20
,
1319
1339
(
2019
).
43.
D.
McKenzie
, “
The generation and compaction of partially molten rock
,”
J. Petrol.
25
,
713
765
(
1984
).
44.
D.
Mckenzie
and
M.
Bickle
, “
The volume and composition of melt generated by extension of the lithosphere
,”
J. Petrol.
29
,
625
679
(
1988
).
45.
J.
Lin
and
E. M.
Parmentier
, “
Mechanisms of lithospheric extension at mid-ocean ridges
,”
Geophys. J. Int.
96
,
1
22
(
1989
).
46.
C.
Zhang
,
J.
Koepke
,
C.
Kirchner
,
N.
Götze
, and
H.
Behrens
, “
Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge
,”
Sci. Rep.
4
,
6342
(
2014
).
47.
T.
Keller
,
R. F.
Katz
, and
M. M.
Hirschmann
, “
Volatiles beneath mid-ocean ridges: Deep melting, channelised transport, focusing, and metasomatism
,”
Earth Planet. Sci. Lett.
464
,
55
68
(
2017
).
48.
J. P.
Canales
,
R. S.
Detrick
,
S. M.
Carbotte
,
G. M.
Kent
,
J. B.
Diebold
,
A.
Harding
,
J.
Babcock
,
M. R.
Nedimović
, and
E.
van Ark
, “
Upper crustal structure and axial topography at intermediate spreading ridges: Seismic constraints from the Southern Juan De Fuca ridge
,”
J. Geophys. Res.
110
,
B12104
, https://doi.org/10.1029/2005JB003630 (
2005
).
49.
R. S.
Detrick
,
P.
Buhl
,
E.
Vera
,
J.
Mutter
,
J.
Orcutt
,
J.
Madsen
, and
T.
Brocher
, “
Multi-channel seismic imaging of a crustal magma chamber along the east pacific rise
,”
Nature
326
,
35
41
(
1987
).
50.
G. M.
Kent
,
A. J.
Harding
, and
J. A.
Orcutt
, “
Distribution of magma beneath the east pacific rise near the 9°03' N overlapping spreading center from forward modeling of common depth point data
,”
J. Geophys. Res.: Solid Earth
98
,
13971
13995
, https://doi.org/10.1029/93JB00706 (
1993
).
51.
R. A.
Dunn
,
V.
Lekić
,
R. S.
Detrick
, and
D. R.
Toomey
, “
Three-dimensional seismic structure of the mid-atlantic ridge (35° N): Evidence for focused melt supply and lower crustal dike injection
,”
J. Geophys. Res.: Solid Earth
110
,
B09101
, https://doi.org/10.1029/2004JB003473 (
2005
).
52.
S. H.
Maron
and
P. E.
Pierce
, “
Application of ree-eyring generalized flow theory to suspensions of spherical particles
,”
J. Colloid Sci.
11
,
80
95
(
1956
).
53.
I. M.
Krieger
and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
54.
J. S.
Chong
,
E. B.
Christiansen
, and
A. D.
Baer
, “
Rheology of concentrated suspensions
,”
J. Appl. Polym. Sci.
15
,
2007
2021
(
1971
).
55.
A. P.
Shapiro
and
R. F.
Probstein
, “
Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions
,”
Phys. Rev. Lett.
68
,
1422
1425
(
1992
).
56.
Z.
Qin
,
K.
Allison
, and
J.
Suckale
, “
Direct numerical simulations of viscous suspensions with variably shaped crystals
,”
J. Comput. Phys.
401
,
109021
(
2020
).
57.
M. S.
Roegiers
and
L.
Roegiers
,
La Viscosite Des Me Langes de Fluides Normaux
(
Socie te des Huiles de Cavel and Roegiers, S.A., Gand
.,
1946
).
58.
M. S.
Roegiers
, “
Discussion of the fundamental equation of viscosity
,”
Ind. Lubr. Tribol.
3
,
27
29
(
1951
).
59.
B.
Zhmud
, “
Viscosity blending equations
,”
Lube Mag.
121
,
22
27
(
2014
).
60.
K.
Nagasawa
,
T.
Suzuki
,
R.
Seto
,
M.
Okada
, and
Y.
Yue
, “
Mixing sauces: A viscosity blending model for shear thinning fluids
,”
ACM Trans. Graph.
38
,
95
(
2019
).
61.
J. W.
Head
,
L.
Wilson
, and
D. K.
Smith
, “
Mid-ocean ridge eruptive vent morphology and substructure: Evidence for dike widths, eruption rates, and evolution of eruptions and axial volcanic ridges
,”
J. Geophys. Res.: Solid Earth
101
,
28265
28280
, https://doi.org/10.1029/96JB02275 (
1996
).
62.
C. G.
Newhall
and
S.
Self
, “
The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism
,”
J. Geophys. Res.
87
,
1231
, https://doi.org/10.1029/JC087iC02p01231 (
1982
).
63.
L.
Siebert
,
E.
Cottrell
,
E.
Venzke
, and
B.
Andrews
,
Earth's Volcanoes and Their Eruptions: An Overview
(
Elsevier
,
2015
), pp.
239
255
.
64.
L.
Caricchi
,
L.
Burlini
,
P.
Ulmer
,
T.
Gerya
,
M.
Vassalli
, and
P.
Papale
, “
Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics
,”
Earth Planet. Sci. Lett.
264
,
402
419
(
2007
).
65.
F.
Costa
and
M.
Dungan
, “
Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine
,”
Geology
33
,
837
(
2005
).
66.
P.
Moitra
and
H. M.
Gonnermann
, “
Effects of crystal shape- and size-modality on magma rheology
,”
Geochem. Geophys. Geosyst.
16
,
1
26
(
2015
).
67.
B. D.
Marsh
, “
On the crystallinity, probability of occurrence, and rheology of lava and magma
,”
Contrib. Mineral. Petrol.
78
,
85
98
(
1981
).
68.
I.
Van der Molen
and
M.
Paterson
, “
Experimental deformation of partially-melted granite
,”
Contrib. Mineral. Petrol.
70
,
299
318
(
1979
).
69.
H. M.
Gonnermann
and
M.
Manga
, “
The fluid mechanics inside a volcano
,”
Annu. Rev. Fluid Mech.
39
,
321
356
(
2007
).
70.
K. W.
Desmond
and
E. R.
Weeks
, “
Influence of particle size distribution on random close packing of spheres
,”
Phys. Rev. E
90
,
022204
(
2014
).
71.
J. D.
Bernal
and
J.
Mason
, “
Packing of spheres: Co-ordination of randomly packed spheres
,”
Nature
188
,
910
911
(
1960
).
72.
R.
Roscoe
, “
The viscosity of suspensions of rigid spheres
,”
Br. J. Appl. Phys.
3
,
267
269
(
1952
).
73.
J.
Klein
,
S. P.
Mueller
,
C.
Helo
,
S.
Schweitzer
,
L.
Gurioli
, and
J. M.
Castro
, “
An expanded model and application of the combined effect of crystal-size distribution and crystal shape on the relative viscosity of magmas
,”
J. Volcanol. Geotherm. Res.
357
,
128
133
(
2018
).
74.
O.
Roche
and
G.
Carazzo
, “
The contribution of experimental volcanology to the study of the physics of eruptive processes, and related scaling issues: A review
,”
J. Volcanol. Geotherm. Res.
384
,
103
150
(
2019
).
75.
L.
Caricchi
,
A.
Pommier
,
M.
Pistone
,
J.
Castro
,
A.
Burgisser
, and
D.
Perugini
, “
Strain-induced magma degassing: Insights from simple-shear experiments on bubble bearing melts
,”
Bull. Volcanol.
73
,
1245
1257
(
2011
).
76.
S. L.
Webb
and
D. B.
Dingwell
, “
Non-Newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt, and nephelinite
,”
J. Geophys. Res.
95
,
15695
, https://doi.org/10.1029/JB095iB10p15695 (
1990
).
77.
M.
Roegiers
and
B.
Zhmud
, “
Property blending relationships for binary mixtures of mineral oil and elektrionised vegetable oil: Viscosity, solvent power, and seal compatibility index
,”
Lubr. Sci.
23
,
263
278
(
2011
).
78.
S.
Glasstone
,
K. J.
Laidler
, and
E.
Henry
,
The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena
(
McGraw-Hill Book Company, Inc
.,
New York, London
,
1941
).
79.
A. E.
Lange
,
R. L.
Nielsen
,
F. J.
Tepley
, and
A. J. R.
Kent
, “
The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges
,”
Geochem. Geophys. Geosyst.
14
,
3282
3296
(
2013
).
80.
V. R.
Voller
and
C.
Prakash
, “
A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems
,”
Int. J. Heat Mass Transfer
30
,
1709
1719
(
1987
).
81.
A.
Brent
,
V. R.
Voller
, and
K.
Reid
, “
Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal
,”
Numer. Heat Transfer, Part A
13
,
297
318
(
1988
).
82.
P.
Zhao
,
R.
Dai
,
W.
Li
,
Q.
Wang
, and
M.
Zeng
, “
Modeling the mushy zone during the melting process under neumann boundary condition using the improved enthalpy-porosity method
,”
Numer. Heat Transfer, Part A
78
,
423
442
(
2020
).
83.
J.-A.
Olive
and
P.
Dublanchet
, “
Controls on the magmatic fraction of extension at mid-ocean ridges
,”
Earth Planet. Sci. Lett.
549
,
116541
(
2020
).
84.
A.
Gudmundsson
, “
How mechanical layering affects local stresses, unrests, and eruptions of volcanoes
,”
Geophys. Res. Lett.
31
,
L16606
, https://doi.org/10.1029/2004GL020083 (
2004
).
85.
K.
Key
,
S.
Constable
,
L.
Liu
, and
A.
Pommier
, “
Electrical image of passive mantle upwelling beneath the northern east pacific rise
,”
Nature
495
,
499
502
(
2013
).
86.
R. L.
Evans
,
P.
Tarits
,
A. D.
Chave
,
A.
White
,
G.
Heinson
,
J. H.
Filloux
,
H.
Toh
,
N.
Seama
,
H.
Utada
,
J. R.
Booker
, and
M. J.
Unsworth
, “
Asymmetric electrical structure in the mantle beneath the east pacific rise at 17° S
,”
Science
286
,
752
756
(
1999
).
87.
D. B.
Rowley
,
A. M.
Forte
,
C. J.
Rowan
,
P.
Glišović
,
R.
Moucha
,
S. P.
Grand
, and
N. A.
Simmons
, “
Kinematics and dynamics of the east pacific rise linked to a stable, deep-mantle upwelling
,”
Sci. Adv.
2
(
12
),
1
18
(
2016
).
88.
J.
Chen
,
J.
Olive
, and
M.
Cannat
, “
Thermal regime of slow and ultraslow spreading ridges controlled by melt supply and modes of emplacement
,”
J. Geophys. Res.: Solid Earth
127
,
e2021JB023715
, https://doi.org/10.1029/2021JB023715 (
2022
).
89.
J.
Escartín
,
D. K.
Smith
,
J.
Cann
,
H.
Schouten
,
C. H.
Langmuir
, and
S.
Escrig
, “
Central role of detachment faults in accretion of slow-spreading oceanic lithosphere
,”
Nature
455
,
790
794
(
2008
).
90.
J.
Lin
and
E. M.
Parmentier
, “
A finite amplitude necking model of rifting in brittle lithosphere
,”
J. Geophys. Res.
95
,
4909
, https://doi.org/10.1029/JB095iB04p04909 (
1990
).
91.
A.
Gudmundsson
, “
Magma chambers: Formation, local stresses, excess pressures, and compartments
,”
J. Volcanol. Geotherm. Res.
237–238
,
19
41
(
2012
).
92.
T.
Reverso
,
J.
Vandemeulebrouck
,
F.
Jouanne
,
V.
Pinel
,
T.
Villemin
,
E.
Sturkell
, and
P.
Bascou
, “
A two-magma chamber model as a source of deformation at grímsvötn volcano, iceland
,”
J. Geophys. Res.: Solid Earth
119
,
4666
4683
, https://doi.org/10.1002/2013JB010569 (
2014
).
93.
R. F.
Katz
, “
Porosity-driven convection and asymmetry beneath mid-ocean ridges
,”
Geochem. Geophys. Geosyst.
11
,
Q0AC07
(
2010
).
94.
C.
Watson
,
J. A.
Neufeld
, and
C.
Michaut
, “
Early asymmetric growth of planetary stagnant lids
,”
J. Fluid Mech.
952
,
A3
(
2022
).
95.
J.
Chenevez
,
P.
Machetel
, and
A.
Nicolas
, “
Numerical models of magma chambers in the oman ophiolite
,”
J. Geophys. Res.: Solid Earth
103
,
15443
15455
, https://doi.org/10.1029/98JB00597 (
1998
).
96.
D.
Picard
,
L.
Arbaret
,
M.
Pichavant
,
R.
Champallier
, and
P.
Launeau
, “
The rheological transition in plagioclase-bearing magmas
,”
J. Geophys. Res.: Solid Earth
118
,
1363
1377
, https://doi.org/10.1002/jgrb.50091 (
2013
).
97.
F. J.
Fontaine
,
M.
Rabinowicz
, and
M.
Cannat
, “
Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading mid-ocean ridges?
,”
Geochem. Geophys. Geosyst.
18
,
1907
1925
(
2017
).
98.
T. V.
Gerya
, “
Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution
,”
Phys. Earth Planet. Inter.
214
,
35
52
(
2013
).
99.
R.
Searle
,
Mid-Ocean Ridges
(
Cambridge University Press
,
2013
).
100.
J.
Chadwick
, “
Magmatic effects of the cobb hot spot on the Juan De Fuca Ridge
,”
J. Geophys. Res.
110
,
B03101
, https://doi.org/10.1029/2003JB002767 (
2005
).
101.
M.
West
,
W.
Menke
, and
M.
Tolstoy
, “
Focused magma supply at the intersection of the cobb hotspot and the Juan De Fuca Ridge
,”
Geophys. Res. Lett.
30
,
1724
, https://doi.org/10.1029/2003GL017104 (
2003
).
102.
N. R.
Grindlay
,
J. A.
Madsen
,
C.
Rommevaux-Jestin
, and
J.
Sclater
, “
A different pattern of ridge segmentation and mantle bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15° 30' E to 25° E)
,”
Earth Planet. Sci. Lett.
161
,
243
253
(
1998
).
103.
C.
Mallows
and
R. C.
Searle
, “
A geophysical study of oceanic core complexes and surrounding terrain, mid-atlantic ridge 13° N-14° N
,”
Geochem. Geophys. Geosyst.
13
,
Q0AG08
(
2012
).
104.
E. T.
Baker
,
C.
Hémond
,
A.
Briais
,
M.
Maia
,
D. S.
Scheirer
,
S. L.
Walker
,
T.
Wang
, and
Y. J.
Chen
, “
Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge
,”
Geochem. Geophys. Geosyst.
15
,
3198
3211
(
2014
).
105.
J.-C.
Sempéré
and
J. R.
Cochran
, “
The Southeast Indian Ridge between 88 E and 118 E: Variations in crustal accretion at constant spreading rate
,”
J. Geophys. Res.: Solid Earth
102
,
15489
15505
, https://doi.org/10.1029/97JB00171 (
1997
).
106.
J. J.
Mahoney
, “
Between a hotspot and a cold spot: Isotopic variation in the Southeast Indian Ridge asthenosphere, 86° E-118° E
,”
J. Petrol.
43
,
1155
1176
(
2002
).
107.
R.
Searle
,
J.
Keeton
,
R.
Owens
,
R.
White
,
R.
Mecklenburgh
,
B.
Parsons
, and
S.
Lee
, “
The reykjanes ridge: Structure and tectonics of a hot-spot-influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations
,”
Earth Planet. Sci. Lett.
160
,
463
478
(
1998
).
108.
V. D.
Wanless
and
A. M.
Shaw
, “
Lower crustal crystallization and melt evolution at mid-ocean ridges
,”
Nat. Geosci.
5
,
651
655
(
2012
).
109.
C. J.
Lissenberg
,
C. J.
MacLeod
, and
E. N.
Bennett
, “
Consequences of a crystal mush-dominated magma plumbing system: A mid-ocean ridge perspective
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
377
,
20180014
(
2019
).
110.
C.
Herzberg
, “
Partial crystallization of mid-ocean ridge basalts in the crust and mantle
,”
J. Petrol.
45
,
2389
2405
(
2004
).
111.
I. J.
Hewitt
, “
Modelling melting rates in upwelling mantle
,”
Earth Planet. Sci. Lett.
300
,
264
274
(
2010
).
112.
C.
Chang
and
R. L.
Powell
, “
Effect of particle size distributions on the rheology of concentrated bimodal suspensions
,”
J. Rheol.
38
,
85
98
(
1994
).
113.
A.
Ilyushechkin
and
A.
Kondratiev
, “
Viscosity of slags with solids: The effect of solids morphology and concentration
,”
J. Rheol.
63
,
719
733
(
2019
).
114.
E. M.
Klein
and
C. H.
Langmuir
, “
Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness
,”
J. Geophys. Res.
92
,
8089
, https://doi.org/10.1029/JB092iB08p08089 (
1987
).
115.
J. L.
Kavanagh
,
A. J.
Burns
,
S. H.
Hazim
,
E. P.
Wood
,
S. A.
Martin
,
S.
Hignett
, and
D. J.
Dennis
, “
Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism
,”
J. Volcanol. Geotherm. Res.
354
,
87
101
(
2018
).
116.
M.
O'Hara
and
R.
Mathews
, “
Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber
,”
J. Geol. Soc.
138
,
237
277
(
1981
).
117.
N.
Shimizu
and
T. L.
Grove
, “
Geochemical studies of olivine-hosted melt inclusions from ridges and arcs
,”
Trans. Am. Geophys. Union
79
,
F1002
F1003
(
1998
).
118.
M. L.
Coombs
and
J. E.
Gardner
, “
Reaction rim growth on olivine in silicic melts: Implications for magma mixing
,”
Am. Miner.
89
,
748
758
(
2004
).
119.
V.
Martin
,
D.
Pyle
, and
M.
Holness
, “
The role of crystal frameworks in the preservation of enclaves during magma mixing
,”
Earth Planet. Sci. Lett.
248
,
787
799
(
2006
).
120.
O.
Bachmann
and
C.
Huber
, “
Silicic magma reservoirs in the earth's crust
,”
Am. Miner.
101
,
2377
2404
(
2016
).
121.
A. R.
Goss
,
M. R.
Perfit
,
W. I.
Ridley
,
K. H.
Rubin
,
G. D.
Kamenov
,
S. A.
Soule
,
A.
Fundis
, and
D. J.
Fornari
, “
Geochemistry of lavas from the 2005–2006 eruption at the east pacific rise, 9° 46′ N-9° 56′ N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions
,”
Geochem. Geophys. Geosyst.
11
(
5
),
1
35
(
2010
).
122.
K.
Rubin
,
M.
Smith
,
E.
Bergmanis
,
M.
Perfit
,
J.
Sinton
, and
R.
Batiza
, “
Geochemical heterogeneity within mid-ocean ridge lava flows: Insights into eruption, emplacement and global variations in magma generation
,”
Earth Planet. Sci. Lett.
188
,
349
367
(
2001
).
123.
D.
Giordano
,
J. K.
Russell
, and
D. B.
Dingwell
, “
Viscosity of magmatic liquids: A model
,”
Earth Planet. Sci. Lett.
271
,
123
134
(
2008
).
124.
Y.
Chen
and
W. J.
Morgan
, “
A nonlinear rheology model for mid-ocean ridge axis topography
,”
J. Geophys. Res.
95
,
17583
, https://doi.org/10.1029/JB095iB11p17583 (
1990
).
125.
O.
Satbhai
and
S.
Roy
, “
Criteria for the onset of convection in the phase-change Rayleigh–Bénard system with moving melting-boundary
,”
Phys. Fluids
32
,
064107
(
2020
).
126.
O.
Satbhai
,
S.
Roy
,
S.
Ghosh
,
S.
Chakraborty
, and
R.
Lakkaraju
, “
Comparison of the quasi-steady-state heat transport in phase-change and classical Rayleigh-Bénard convection for a wide range of Stefan number and Rayleigh number
,”
Phys. Fluids
31
,
096605
(
2019
).
127.
T.
Belytschko
, “
Fluid-structure interaction
,”
Comput. Struct.
12
,
459
469
(
1980
).
128.
P.
Kundu
,
I.
Cohen
,
G.
Hu
, and
D.
Dowling
,
Fluid Mechanics
,
6th ed.
(
Academic Press
,
2015
).
You do not currently have access to this content.