A series of numerical simulations were performed to investigate the feasibility and performance of the premixed ammonia/hydrogen/air rotating detonation engines. A 19 species and 80 reactions ammonia/hydrogen/air mechanism is adopted and validated for detonation simulations. The effects of injection total temperatures (T0) and ammonia/hydrogen equivalence ratios (φNH3 and φH2) are analyzed under a fixed global equivalence ratio of 1. The propagation map of rotating detonation waves is numerically outlined. The result indicates that a higher injection total temperature and a lower ammonia equivalence ratio are beneficial to the successful propagation of rotating detonation waves. The maximum φNH3 with successful propagation of rotating detonation waves reaches 0.6, achieved at T0 = 1000 K. High total temperatures and ammonia equivalence ratios can lead to lower detonation wave speeds. The detonation height is found to account for around 20%–36% of the engine axial length. The critical accommodated detonation cell number for successful propagation of rotating detonation waves is 5.9, below which the rotating detonation wave will have difficulty maintaining propagation. Mass-flow-averaged and area-averaged methods are adopted to evaluate the pressure gain performance of NH3/H2/air RDE. The results of the two methods both indicate that the total pressure gain is significantly affected by the injection total temperature but less affected by the equivalence ratio of NH3. In addition, it is found that NOx emission is dominated by NO. The NOx emission increases with increased injection total temperatures and ammonia equivalence ratios. Negligible NOx emission is produced in pure hydrogen-fueled RDE while it reaches the maximum (0.037) at φNH3 = 0.6 and T0 = 1000 K.

1.
A.
Valera-Medina
,
H.
Xiao
,
M.
Owen-Jones
,
W. I. F.
David
, and
P. J.
Bowen
, “
Ammonia for power
,”
Prog. Energy Combust. Sci.
69
,
63
(
2018
).
2.
C.
Zamfirescu
and
I.
Dincer
, “
Ammonia as a green fuel and hydrogen source for vehicular applications
,”
Fuel Process. Technol.
90
,
729
(
2009
).
3.
Y.
Xu
and
H.
Zhang
, “
Pulsating propagation and extinction of hydrogen detonations in ultrafine water sprays
,”
Combust. Flame
241
,
112086
(
2022
).
4.
Y.
Xu
and
H.
Zhang
, “
Interactions between a propagating detonation wave and circular water cloud in hydrogen/air mixture
,”
Combust. Flame
245
,
112369
(
2022
).
5.
A. T.
Raissi
and
D. L.
Block
, “
Hydrogen: Automotive fuel of the future
,”
IEEE Power Energy Mag.
2
,
40
(
2004
).
6.
B. T.
Zhao
,
Y. X.
Su
, and
G. M.
Cui
, “
Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: Process intensification and performance characteristics
,”
Energy
102
,
106
(
2016
).
7.
Z.
Yu
and
H.
Zhang
, “
End-gas autoignition and knocking combustion of ammonia/hydrogen/air mixtures in a confined reactor
,”
Int. J. Hydrogen Energy
47
,
8585
(
2022
).
8.
D. H.
Um
,
T. Y.
Kim
, and
O. C.
Kwon
, “
Power and hydrogen production from ammonia in a micro-thermophotovoltaic device integrated with a micro-reformer
,”
Energy
73
,
531
(
2014
).
9.
E. C.
Okafor
,
K. D. K. A.
Somarathne
,
R.
Ratthanan
,
A.
Hayakawa
,
T.
Kudo
,
O.
Kurata
,
N.
Iki
,
T.
Tsujimura
,
H.
Furutani
, and
H.
Kobayashi
, “
Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia
,”
Combust. Flame
211
,
406
(
2020
).
10.
T.
Cai
,
D.
Zhao
,
B.
Wang
,
J.
Li
, and
Y.
Guan
, “
NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor
,”
Fuel
280
,
118554
(
2020
).
11.
Z.
Wang
,
X.
Li
,
L.
Li
,
Z.
Zhao
,
B.
Zhou
, and
X.
Gan
, “
Strategy for simultaneous multi-scalar imaging in turbulent NH3/H2 premixed flames using a single laser system
,”
Combust. Flame
242
,
112185
(
2022
).
12.
B.
Mei
,
J.
Zhang
,
X.
Shi
,
Z.
Xi
, and
Y.
Li
, “
Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm
,”
Combust. Flame
231
,
111472
(
2021
).
13.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
(
2013
).
14.
V.
Anand
and
E.
Gutmark
, “
Rotating detonation combustors and their similarities to rocket instabilities
,”
Prog. Energy Combust. Sci.
73
,
182
(
2019
).
15.
J. Z.
Ma
,
M.-Y.
Luan
,
Z.-J.
Xia
,
J.-P.
Wang
,
S.-J.
Zhang
,
S.-B.
Yao
, and
B.
Wang
, “
Recent progress, development trends, and consideration of continuous detonation engines
,”
AIAA J.
58
,
4976
(
2020
).
16.
S. M.
Frolov
,
I. O.
Shamshin
,
V. S.
Aksenov
,
P. A.
Gusev
,
V. A.
Zelensky
,
E. V.
Evstratov
, and
M. I.
Alymov
, “
Rocket engine with continuously rotating liquid-film detonation
,”
Combust. Sci. Technol.
192
,
144
(
2020
).
17.
Z. C.
Wang
,
K.
Wang
,
Q. G.
Li
,
Y. Y.
Zhu
,
M. H.
Zhao
, and
W.
Fan
, “
Effects of the combustor width on propagation characteristics of rotating detonation waves
,”
Aerosp. Sci. Technol.
105
,
106038
(
2020
).
18.
Y. Y.
Zhu
,
K.
Wang
,
Z. C.
Wang
,
M. H.
Zhao
,
Z. T.
Jiao
,
Y.
Wang
, and
W.
Fan
, “
Study on the performance of a rotating detonation chamber with different aerospike nozzles
,”
Aerosp. Sci. Technol.
107
,
106338
(
2020
).
19.
P.
Wolański
, “
Application of the continuous rotating detonation to gas turbine
,”
Appl. Mech. Mater.
782
,
3
(
2015
).
20.
S. B.
Zhou
,
H.
Ma
,
S.
Li
,
D. K.
Liu
,
Y.
Yan
, and
C. S.
Zhou
, “
Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics
,”
Int. J. Hydrogen Energy
42
,
20297
(
2017
).
21.
C.
Zhang
,
Z.
Lin
, and
T.
Dong
, “
Numerical study on the interaction characterization of rotating detonation wave and turbine rotor blades
,”
Int. J. Hydrogen Energy
47
,
6898
(
2022
).
22.
S.
Liu
,
W.
Liu
,
Y.
Wang
, and
Z.
Lin
, “
Free jet test of continuous rotating detonation ramjet engine
,” in AIAA Paper No. AIAA 2017-2282,
2017
.
23.
H. L.
Meng
,
Q.
Xiao
,
W. K.
Feng
,
M. L.
Wu
,
X. P.
Han
,
F.
Wang
,
C. S.
Weng
, and
Q.
Zheng
, “
Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor
,”
Aerosp. Sci. Technol.
122
,
107407
(
2022
).
24.
N. N.
Smirnov
,
V. F.
Nikitin
,
L. I.
Stamov
,
E. V.
Mikhalchenko
, and
V. V.
Tyurenkova
, “
Three-dimensional modeling of rotating detonation in a ramjet engine
,”
Acta Astronaut.
163
,
168
(
2019
).
25.
N. N.
Smirnov
,
V. F.
Nikitin
,
L. I.
Stamov
,
E. V.
Mikhalchenko
, and
V. V.
Tyurenkova
, “
Rotating detonation in a ramjet engine three-dimensional modeling
,”
Aerosp. Sci. Technol.
81
,
213
(
2018
).
26.
S. M.
Frolov
,
V. I.
Zvegintsev
,
V. S.
Ivanov
,
V. S.
Aksenov
,
I. O.
Shamshin
,
D. A.
Vnuchkov
,
D. G.
Nalivaichenko
,
A. A.
Berlin
, and
V. M.
Fomin
, “
Wind tunnel tests of a hydrogen-fueled detonation ramjet model at approach air stream Mach numbers from 4 to 8
,”
Int. J. Hydrogen Energy
42
,
25401
(
2017
).
27.
Y.
Wu
,
G.
Xu
,
C.
Ding
, and
C.
Weng
, “
On the wave propagation modes and operation range in rotating detonation combustor with varied injection and outlet throat
,”
Phys. Fluids
35
,
016128
(
2023
).
28.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical study of the mechanisms of the longitudinal pulsed detonation in two-dimensional rotating detonation combustors
,”
Phys. Fluids
35
,
036123
(
2023
).
29.
X.
Ni
,
H.
Xu
,
X.
Su
,
B.
Xiao
et al, “
Effects of different physical properties of anthracite powder fuel on detonation characteristics of a rotating detonation engine
,”
Phys. Fluids
35
,
053325
(
2023
).
30.
R.
Zhou
and
J. P.
Wang
, “
Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
,”
Combust. Flame
159
,
3632
(
2012
).
31.
Y.
Liu
,
W. J.
Zhou
,
Y. J.
Yang
,
Z.
Liu
, and
J. P.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
32.
K.
Wu
,
S.-J.
Zhang
,
D.-W.
She
, and
J.-P.
Wang
, “
Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor
,”
Phys. Fluids
33
,
126112
(
2021
).
33.
W.
Zhu
,
Y.
Wang
, and
J.
Wang
, “
Flow field of a rotating detonation engine fueled by carbon
,”
Phys. Fluids
34
,
073311
(
2022
).
34.
M. J.
Zhao
,
M. J.
Cleary
, and
H. W.
Zhang
, “
Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection
,”
Combust. Flame
225
,
291
(
2021
).
35.
M. J.
Zhao
and
H. W.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
36.
M.
Zhao
,
J.-M.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow, Turbul. Combust.
104
,
261
(
2020
).
37.
F.
Wang
and
C.
Weng
, “Effects of divergence inlet on kerosene/air rotating detonation engines,”
AIAA J.
60
,
4578
(
2022
).
38.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
(
2006
).
39.
J.
Han
,
Q.
Bai
,
S.
Zhang
, and
C.
Weng
, “
Experimental study on propagation mode of rotating detonation wave with cracked kerosene gas and ambient temperature air
,”
Phys. Fluids
34
,
075127
(
2022
).
40.
H.-Y.
Peng
,
W.-D.
Liu
,
S.-J.
Liu
,
H.-L.
Zhang
, and
L.-X.
Jiang
, “
Flowfield analysis and reconstruction of ethylene–air continuous rotating detonation wave
,”
AIAA J.
58
,
5036
(
2020
).
41.
H. Y.
Peng
,
W. D.
Liu
,
S. J.
Liu
, and
H. L.
Zhang
, “
The effect of cavity on ethylene-air continuous rotating detonation in the annular combustor
,”
Int. J. Hydrogen Energy
44
,
14032
(
2019
).
42.
W.
Fan
,
S.
Liu
,
S.
Zhong
,
H.
Peng
,
X.
Yuan
, and
W.
Liu
, “
Characteristics of ethylene–air continuous rotating detonation in the cavity-based annular combustor
,”
Phys. Fluids
35
,
045142
(
2023
).
43.
V.
Anand
,
A. St.
George
,
R.
Driscoll
, and
E.
Gutmark
, “
Investigation of rotating detonation combustor operation with H2-Air mixtures
,”
Int. J. Hydrogen Energy
41
,
1281
(
2016
).
44.
V.
Anand
,
A. St.
George
,
R.
Driscoll
, and
E.
Gutmark
, “
Characterization of instabilities in a Rotating Detonation Combustor
,”
Int. J. Hydrogen Energy
40
,
16649
(
2015
).
45.
V.
Anand
,
A. St.
George
, and
E.
Gutmark
, “
Amplitude modulated instability in reactants plenum of a rotating detonation combustor
,”
Int. J. Hydrogen Energy
42
,
12629
(
2017
).
46.
Q.
Xiao
and
C.
Weng
, “
Effect of losses on hydrogen–oxygen–argon detonation cell sizes
,”
Phys. Fluids
33
,
116103
(
2021
).
47.
Q.
Bai
,
J.
Han
,
S.
Zhang
, and
C.
Weng
, “
Experimental study on the auto-initiation of rotating detonation with high-temperature hydrogen-rich gas
,”
Phys. Fluids
35
,
045121
(
2023
).
48.
A. St.
George
,
R.
Driscoll
,
V.
Anand
, and
E.
Gutmark
, “
On the existence and multiplicity of rotating detonations
,”
Proc. Combust. Inst
36
,
2691
(
2017
).
49.
G.
Rong
,
C.
Miao
,
Z.
Sheng
,
Y.
Zhang
,
X.
Liu
, and
J.
Wang
, “
Flow field characteristics and particle path tracking of a hollow rotating detonation engine with a Laval nozzle
,”
Phys. Fluids
35
,
056103
(
2023
).
50.
R.
Mével
,
J.
Melguizo-Gavilanes
, and
N.
Chaumeix
,
Detonation in Ammonia-Based Mixtures
(
The University of Sydney
,
NSW Australia
,
2017
).
51.
R.
Zhu
,
M.
Zhao
, and
H.
Zhang
, “
Numerical simulation of flame acceleration and deflagration-to-detonation transition in ammonia-hydrogen–oxygen mixtures
,”
Int. J. Hydrogen Energy
46
,
1273
(
2021
).
52.
R.
Zhu
,
X.
Fang
,
C.
Xu
,
M.
Zhao
,
H.
Zhang
, and
M.
Davy
, “
Pulsating one-dimensional detonation in ammonia-hydrogen–air mixtures
,”
Int. J. Hydrogen Energy
47
,
21517
(
2022
).
53.
C. S.
Mørch
,
A.
Bjerre
,
M. P.
Gøttrup
,
S. C.
Sorenson
, and
J.
Schramm
, “
Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system
,”
Fuel
90
,
854
(
2011
).
54.
J. H.
Lee
,
J. H.
Kim
,
J. H.
Park
, and
O. C.
Kwon
, “
Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production
,”
Int. J. Hydrogen Energy
35
,
1054
(
2010
).
55.
S.-Y.
Huang
,
J.
Zhou
,
S.-J.
Liu
,
H.-Y.
Peng
, and
X.-Q.
Yuan
, “
Ammonia/oxygen-enriched air continuous rotating detonation in the hollow chamber
,”
Fuel
311
,
122166
(
2022
).
56.
S.-Y.
Huang
,
J.
Zhou
,
S.-J.
Liu
,
H.-Y.
Peng
, and
X.-Q.
Yuan
, “
Continuous rotating detonation engine fueled by ammonia
,”
Energy
252
,
123911
(
2022
).
57.
Z.
Sun
,
Y.
Huang
,
Z.
Luan
,
S.
Gao
, and
Y.
You
, “
Three-dimensional simulation of a rotating detonation engine in ammonia/hydrogen mixtures and oxygen-enriched air
,”
Int. J. Hydrogen Energy
48
,
4891
(
2023
).
58.
B. J.
Mcbride
,
S. D.
Gordon
, and
M. A.
Reno
, “Coefficients for calculating thermodynamic and transport properties of individual species,” Technical Report NASA-TM-4513 (
NASA
,
1993
).
59.
H. G.
Weller
,
G. R.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
(
1998
).
60.
B. V.
Voitsekhovskii
,
V. V.
Mitrofanov
, and
M. E.
Topchiyan
, “
Structure of the detonation front in gases (survey)
,”
Combust., Explos. Shock Waves
5
,
267
(
1969
).
61.
M.
Zhao
and
H.
Zhang
, “
Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: Droplet size and equivalence ratio effects
,”
Fuel
304
,
121481
(
2021
).
62.
S.
Jin
,
C.
Xu
,
H.
Zheng
, and
H.
Zhang
, “
Detailed chemistry modeling of rotating detonations with dilute n-heptane sprays and preheated air
,”
Proc. Combust. Inst.
39
,
4761–4769
(
2022
).
63.
Q. Y.
Meng
,
N. B.
Zhao
, and
H. W.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
64.
Y.
Xu
,
M.
Zhao
, and
H.
Zhang
, “
Extinction of incident hydrogen/air detonation in fine water sprays
,”
Phys. Fluids
33
,
116109
(
2021
).
65.
H. W.
Zhang
,
M. J.
Zhao
, and
Z. W.
Huang
, “
Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM
,”
Fuel
282
,
118812
(
2020
).
66.
R.
Bluemner
,
M.
Bohon
,
C. O.
Paschereit
, and
E. J.
Gutmark
, “
Dynamics of counter-rotating wave modes in an RDC
,” AIAA Paper No. AIAA 2018-4572,
2018
.
67.
H.
Wen
,
W.
Wei
,
W.
Fan
,
Q.
Xie
, and
B.
Wang
, “
On the propagation stability of droplet-laden two-phase rotating detonation waves
,”
Combust. Flame
244
,
112271
(
2022
).
68.
F.
Wang
,
C. S.
Weng
,
Y. W.
Wu
,
Q. D.
Bai
,
Q. A.
Zheng
, and
H.
Xu
, “
Numerical research on kerosene/air rotating detonation engines under different injection total temperatures
,”
Aerosp. Sci. Technol.
103
,
105899
(
2020
).
69.
C.
Duynslaegher
,
H.
Jeanmart
, and
J.
Vandooren
, “
Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: Experimental and numerical investigation
,”
Proc. Combust. Inst.
32
,
1277
(
2009
).
70.
A.
Kéromnès
,
W. K.
Metcalfe
,
K. A.
Heufer
,
N.
Donohoe
,
A. K.
Das
,
C.-J.
Sung
,
J.
Herzler
,
C.
Naumann
,
P.
Griebel
,
O.
Mathieu
,
M. C.
Krejci
,
E. L.
Petersen
,
W. J.
Pitz
, and
H. J.
Curran
, “
An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures
,”
Combust. Flame
160
,
995
(
2013
).
71.
P.
Dagaut
and
A.
Nicolle
, “
Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia
,”
Proc. Combust. Inst.
30
,
1211
(
2005
).
72.
J.
Li
,
H.
Huang
,
N.
Kobayashi
,
C.
Wang
, and
H.
Yuan
, “
Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
,”
Energy
126
,
796
(
2017
).
73.
S. T.
Browne
and
J.
Ziegler
, “Numerical solution methods for shock and detonation jump conditions,” GALCIT Technical Report FM2018.001 (
Graduate Aerospace Laboratories of the California Institute of Technology
,
2021
).
74.
B. A.
Rankin
,
D. R.
Richardson
,
A. W.
Caswell
,
A. G.
Naples
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine
,”
Combust. Flame
176
,
12
(
2017
).
75.
H.
Xu
,
X.
Ni
,
X.
Su
,
B.
Xiao
,
Y.
Luo
,
F.
Zhang
,
C.
Weng
, and
Q.
Zheng
, “
Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor
,”
Appl. Therm. Eng.
213
,
118642
(
2022
).
76.
S.
Frigo
and
R.
Gentili
, “
Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen
,”
Int. J. Hydrogen Energy
38
,
1607
(
2013
).
77.
F.
Wang
and
C.
Weng
, “
Preliminary criterion for positive total pressure gain in kerosene/air rotating detonation combustor
,”
AIAA J.
60
,
6548
(
2022
).
78.
T. A.
Kaemming
and
D. E.
Paxson
, “
Determining the pressure gain of pressure gain combustion,
” 2018 Joint Propulsion Conference, Cincinnati, OH, 9–11 July 2018 (
AIAA
,
2018
), AIAA Paper 2018–4567.
79.
Z.
Liu
,
L.
Zhou
, and
H.
Wei
, “
Experimental investigation on the performance of pure ammonia engine based on reactivity controlled turbulent jet ignition
,”
Fuel
335
,
127116
(
2023
).
80.
S.
Yungster
and
K.
Breisacher
, “
Study of NOx formation in hydrocarbon-fueled pulse detonation engines
,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, 10–13 July 2005 (
AIAA
,
2018
), AIAA Paper 2005–4210.
81.
C.
Duynslaegher
,
H.
Jeanmart
, and
J.
Vandooren
, “
Ammonia combustion at elevated pressure and temperature conditions
,”
Fuel
89
,
3540
(
2010
).10.2514/6.2005-4210
You do not currently have access to this content.