In this paper, the effects of herringbone riblets (HRs) on a turbulent boundary layer and the shock wave/boundary layer interactions (SWBLIs) are experimentally investigated at the Mach number of 3. An array of three varied lengths of HRs strips are applied upstream of the separation zone of SWBLIs on a compression ramp model. High-speed schlieren, oil-flow visualization, and the planar laser scattering technique are used to examine the shock pattern and boundary layer developing over the surface of the model. The snapshot proper orthogonal decomposition technique and the Fast Fourier Transform method are applied to study the impact of HRs on the interaction between the shock wave and the boundary layer. The experiments provide convincing evidence that HRs make the separation line wavy and shrink the separation zone by about −39.54% for the longest HRs in the present experiments. Furthermore, it is also revealed that these microscale HRs induce large-scale streamwise vortical structures within the boundary layer as found in incompressible flows. It is believed that these vortices promote momentum transfer within the boundary layer hence providing the dominant mechanism for suppressing flow separation.

1.
J. M.
Delery
, “
Shock wave/turbulent boundary layer interaction and its control
,”
Prog. Aerosp. Sci.
22
(
4
),
209
280
(
1985
).
2.
D. S.
Dolling
, “
50 years of shock wave/boundary layer interaction research- what next?
,” in
Fluids Conference and Exhibit
,
2000
.
3.
D. V.
Gaitonde
, “
Progress in shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
72
,
80
99
(
2015
).
4.
T.
Osuka
,
E.
Erdem
,
N.
Hasegawa
,
R.
Majima
,
T.
Tamba
,
S.
Yokota
,
A.
Sasoh
, and
K.
Kontis
, “
Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations
,”
Phys. Fluids
26
(
9
),
096103
(
2014
).
5.
V.
Narayanaswamy
,
L. L.
Raja
, and
N. T.
Clemens
, “
Control of unsteadiness of a shock wave turbulent boundary layer interaction by using a pulsed-plasma jet Actuator
,”
Phys. Fluids
24
,
076101
(
2012
).
6.
J. M.
Délery
and
R.
Bur
, “
The physics of shock wave/boundary layer interaction control: Last lessons learned
,” in
European Congress on Computational Methods in Applied Sciences and Engineering
,
2000
.
7.
P. J. K.
Bruce
and
S. P.
Colliss
, “
Review of research into shock control bumps
,”
Shock Waves
25
(
5
),
451
471
(
2015
).
8.
M. J.
Morris
,
M.
Sajben
, and
J. C.
Kroutil
, “
Experimental investigation of normal-shock/turbulent boundary-layer interactions with and without mass removal
,”
AIAA J.
30
(
2
),
359
366
(
1992
).
9.
N.
Titchener
and
H.
Babinsky
, “
A review of the use of vortex generators for mitigating shock-induced separation
,”
Shock Waves
25
(
5
),
473
494
(
2015
).
10.
S. B.
Verma
,
C.
Manisankar
, and
P.
Akshara
, “
Control of shock-wave boundary layer interaction using steady micro-jets
,”
Shock Waves
25
(
5
),
535
543
(
2015
).
11.
H.
Wang
,
W.
Hu
,
F.
Xie
,
J.
Li
,
Y.
Jia
, and
Y.
Yang
, “
Control effects of a high-frequency pulsed discharge on a hypersonic separated flow
,”
Phys. Fluids
34
(
6
),
066102
(
2022
).
12.
K.
Zhu
,
F.
Xie
,
G.
Wang
et al, “
Separation characteristics of shock wave/turbulent boundary layer interaction under the effect of a transverse jet
,”
Phys. Fluids
35
,
055142
(
2023
).
13.
H.
Wu
,
W.
Huang
,
X.
Zhong
et al, “
Study of the streamwise location of a micro vortex generator for a separation-control mechanism in supersonic flow
,”
Phys. Fluids
34
,
116115
(
2022
).
14.
H.
Babinsky
and
H.
Ogawa
, “
SBLI control for wings and inlets
,”
Shock Waves
18
(
2
),
89
96
(
2008
).
15.
P.
Ashill
,
J.
Fulker
, and
K.
Hackett
, “
Research at DERA on sub-boundary layer vortex generators (SBVGs)
,” in
39th Aerospace Sciences Meeting and Exhibit
,
2001
.
16.
D. K.
Gartling
, “
Tests of vortex generators to prevent separation of supersonic flow in a compression corner
,” Report No. ARL-TR-70-44 (
Texas Univ at Austin Applied Research Labs
,
1970
).
17.
D. C.
McCormick
, “
Shock/boundary-layer interaction control with vortex generators and passive cavity
,”
AIAA J.
31
(
1
),
91
(
1993
).
18.
A. G.
Panaras
and
F. K.
Lu
, “
Micro-vortex generators for shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
74
,
16
47
(
2015
).
19.
K.
Koeltzsch
,
A.
Dinkelacker
, and
R.
Grundmann
, “
Flow over convergent and divergent wall riblets
,”
Exp. Fluids
33
(
2
),
346
350
(
2002
).
20.
B.
Nugroho
,
V.
Kulandaivelu
,
Z.
Harun
,
N.
Hutchins
, and
J. P.
Monty
, “
An investigation into the effects of highly directional surface roughness on turbulent boundary layers
,” in
17th Australasian Fluid Mechanics Conference
,
2010
.
21.
B.
Nugroho
,
N.
Hutchins
, and
J. P.
Monty
, “
Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness
,”
Int. J. Heat Fluid Flow
41
,
90
102
(
2013
).
22.
B.
Nugroho
,
E.
Gnanamanickam
,
K.
Kevin
,
J.
Monty
, and
N.
Hutchins
, “
Roll-modes generated in turbulent boundary layers with passive surface modifications
,” in
52nd Aerospace Sciences Meeting
, 2014.
23.
K.
Kevin
,
J. P.
Monty
,
H. L.
Bai
,
G.
Pathikonda
,
B.
Nugroho
,
J. M.
Barros
,
K. T.
Christensen
, and
N.
Hutchins
, “
Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern
,”
J. Fluid Mech.
813
,
412
435
(
2017
).
24.
K.
Kevin
,
J.
Monty
, and
N.
Hutchins
, “
The meandering behaviour of large-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
865
,
R1.1
R1.13
(
2019
).
25.
F.
Xu
,
S.
Zhong
, and
S.
Zhang
, “
Vortical structures and development of laminar flow over convergent-divergent riblets
,”
Phys. Fluids
30
(
5
),
051901
(
2018
).
26.
F.
Xu
,
S.
Zhong
, and
S.
Zhang
, “
Statistical analysis of vortical structures in turbulent boundary layer over directional grooved surface pattern with spanwise heterogeneity
,”
Phys. Fluids
31
(
8
),
085110
(
2019
).
27.
F.
Xu
,
S.
Zhong
, and
S.
Zhang
, “
Experimental study on secondary flow in turbulent boundary layer over spanwise heterogeneous microgrooves
,”
Phys. Fluids
32
(
3
),
035109
(
2020
).
28.
H.
Chen
,
F.
Rao
,
X.
Shang
,
D.
Zhang
, and
I.
Hagiwara
, “
Flow over bio-inspired 3D herringbone wall riblets
,”
Exp. Fluids
55
(
3
),
1698
(
2014
).
29.
Q.
Liu
,
S.
Zhong
, and
L.
Li
, “
Reduction of pressure losses in a linear cascade using herringbone riblets
,” in
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
(
ASME
,
2017
).
30.
Q.
Liu
,
S.
Zhong
, and
L.
Li
, “
Investigation of riblet geometry and start locations of herringbone riblets on pressure losses in a linear cascade at low Reynolds numbers
,”
J. Turbomach.
142
(
10
),
101010
(
2020
).
31.
T.
Guo
,
S.
Zhong
, and
T.
Craft
, “
Control of laminar flow separation over a backwardfacing rounded ramp with C-D riblets—The effects of riblet height, spacing and yaw angle
,”
Int. J. Heat Fluid Flow
85
,
108629
(
2020
).
32.
P.
Quan
,
S.
Zhong
,
Q.
Liu
, and
L.
Li
, “
Attenuation of flow separation using herringbone riblets at m = 5
,”
AIAA J.
57
(
1
),
142
152
(
2019
).
33.
T.
Guo
,
J.
Fang
,
J.
Zhang
, and
X.
Li
, “
Direct numerical simulation of shock-wave/boundary layer interaction controlled with convergent–divergent riblets
,”
Phys. Fluids
34
(
8
),
086101
(
2022
).
34.
L.
He
,
S.
Yi
,
Y.
Zhao
,
L.
Tian
, and
Z.
Chen
, “
Experimental study of a supersonic turbulent boundary layer using PIV
,”
Sci. China Phys., Mech. Astron.
54
(
9
),
1702
1709
(
2011
).
35.
E. R. V.
Driest
, “
Investigation of laminar boundary layer in compressible fluids using the Crocco method
,”
Report No. NACA-TN-2597
,
1952
.
36.
M. J.
Ringuette
,
M.
Wu
, and
M. P.
Martin
, “
Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3
,”
J. Fluid Mech.
594
,
59
69
(
2008
).
37.
A.
Kendall
and
M.
Koochesfahani
, “
A method for estimating wall friction in turbulent wall-bounded flows
,”
Exp. Fluids
44
(
5
),
773
780
(
2008
).
38.
L. C.
Squire
, “
The motion of a thin oil sheet under the steady boundary layer on a body
,”
J. Fluid Mech.
11
(
2
),
161
179
(
1961
).
39.
Kevin
,
B.
Nugroho
,
J. P.
Monty
, and
N.
Hutchins
, “
Wall-parallel PIV measurements in turbulent boundary layers with highly directional surface roughness
,” in
19th Australasian Fluid Mechanics Conference
,
Melbourne, Australia
, 8–11 December
2014
.
40.
M. G.
Berry
,
A. S.
Magstadt
, and
M. N.
Glauser
, “
Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets
,”
Phys. Fluids
29
(
2
),
020706
(
2017
).
You do not currently have access to this content.