Hydrogen/air rotating detonation turbine engine is expected to become a new generation of aerospace power plant because of its compact structure, high cycle thermal efficiency, and superior thrust performance. It can also reduce fuel consumption, save energy, and reduce carbon emissions. However, the highly unsteady oscillation characteristics of the outlet flow of the rotating detonation combustor make it difficult to integrate the supersonic turbine with the rotating detonation combustor. In this paper, the supersonic turbine guide vanes are designed by the method of characteristics and Bessel parameterization and are integrated with three-dimensional hydrogen/air rotating detonation combustors for numerical studies. The effects of aligned mode and misaligned mode on the coupling of supersonic turbine guide vanes and rotating detonation combustor are discussed carefully. The results show that the supersonic turbine guide vanes can make the rotating detonation wave change from a single-wave mode to a double-wave alternating strength and weak propagation mode. It can effectively suppress the oscillation of the combustion chamber outlet airflow. In the aligned mode, the peak pressure at the outlet of the supersonic turbine is about 70% lower than that at the cascade inlet, the pressure oscillation amplitude is reduced by 93.33%, and the temperature amplitude is reduced by 23.81%; the average total pressure loss coefficient of the cascade is 11.63%. In the misaligned mode, compared with the cascade inlet, the peak value of the pressure signal at the cascade outlet decreases by about 50%, while the pressure oscillation amplitude decreases by about 33.33%, and the temperature oscillation amplitude decreases by 11.11%; the average total pressure loss coefficient of the cascade is 4.83%. The supersonic turbine guide vanes have a better suppression effect on the oscillation signal in the aligned mode, but the relative total pressure loss is relatively large. This is because that the oblique shock wave, channel shock wave, and supersonic turbine guide vanes interact to generate more complex wave system and secondary flow in the aligned mode. These features provide important reference information for the coupling of supersonic turbines and rotating detonation combustors.

1.
Q.
Bai
,
J.
Han
,
S.
Zhang
, and
C.
Weng
, “
Experimental study on the auto-initiation of rotating detonation with high-temperature hydrogen-rich gas
,”
Phys. Fluids
35
,
045121
(
2023
).
2.
W.
Zhu
,
Y.
Wang
, and
J.
Wang
, “
Flow field of a rotating detonation engine fueled by carbon
,”
Phys. Fluids
34
,
073311
(
2022
).
3.
W.
Fan
,
S.
Liu
,
S.
Zhong
,
H.
Peng
,
X.
Yuan
, and
W.
Liu
, “
Characteristics of ethylene-air continuous rotating detonation in the cavity-based annular combustor
,”
Phys. Fluids
35
,
045142
(
2023
).
4.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
Y.
Zhang
,
X.
Liu
, and
J.
Wang
, “
Flow field characteristics and particle path tracking of a hollow rotating detonation engine with a Laval nozzle
,”
Phys. Fluids
35
,
056103
(
2023
).
5.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
Investigation of counter-rotating shock wave and wave direction control of hollow rotating detonation engine with Laval nozzle
,”
Phys. Fluids
34
,
056104
(
2022
).
6.
B. V.
Voitsekhovskii
, “
Stationary detonation
,”
Dokl. Akad. Nauk SSSR
129
,
1254
(
1959
).
7.
B.
Voytsekhovskiy
,
V. V.
Mitrofanov
, and
M.
Topchiyan
, “
The structure of a detonation front in gases
,”
Technical Report No. AD-633-821
(
Foreign Technology Division
,
Wright-Patterson AFB, OH
,
1966
).
8.
P.
Stathopoulos
, “
Comprehensive thermodynamic analysis of the Humphrey cycle for gas turbines with pressure gain combustion
,”
Energies
11
,
3521
(
2018
).
9.
P.
Stathopoulos
,
T.
Rähse
,
J.
Vinkeloe
, and
N.
Djordjevic
, “
First law thermodynamic analysis of the recuperated Humphrey cycle for gas turbines with pressure gain combustion
,”
Energy
200
,
117492
(
2020
).
10.
P.
Stathopoulos
,
T.
Rähse
,
J.
Vinkeloe
, and
N.
Djordjevic
, “
Steam injected Humphrey cycle for gas turbines with pressure gain combustion
,”
Energy
188
,
116020
(
2019
).
11.
E.
Bach
,
P.
Stathopoulos
,
C. O.
Paschereit
, and
M. D.
Bohon
, “
Performance analysis of a rotating detonation combustor based on stagnation pressure measurements
,”
Combust. Flame
217
,
21
36
(
2020
).
12.
P.
Stathopoulos
, “
An alternative architecture of the Humphrey cycle and the effect of fuel type on its efficiency
,”
Energy Sci. Eng.
8
,
3702
3716
(
2020
).
13.
J.
Sousa
,
G.
Paniagua
, and
E. C.
Morata
, “
Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor
,”
Appl. Energy
195
,
247
256
(
2017
).
14.
E. M.
Braun
,
F. K.
Lu
,
D. R.
Wilson
, and
J. A.
Camberos
, “
Airbreathing rotating detonation wave engine cycle analysis
,”
Aerosp. Sci. Technol.
27
,
201
208
(
2013
).
15.
Z.
Ji
,
H.
Zhang
, and
B.
Wang
, “
Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine
,”
Aerosp. Sci. Technol.
113
,
106694
(
2021
).
16.
H. V.
Cao
, “
Parametric cycle analysis of continuous rotating detonation ejector-augmented rocket engine
,” AIAA Paper No. 2013-3971,
2013
.
17.
H.
Zheng
,
L.
Qi
,
N.
Zhao
,
Z.
Li
, and
X.
Liu
, “
A thermodynamic analysis of the pressure gain of continuously rotating detonation combustor for gas turbine
,”
Appl. Sci.
8
,
535
(
2018
).
18.
L.
Su
,
F.
Wen
,
S.
Wang
, and
Z.
Wang
, “
Analysis of energy saving and thrust characteristics of rotating detonation turbine engine
,”
Aerosp. Sci. Technol.
124
,
107555
(
2022
).
19.
M. R.
Nalim
, “
Thermodynamic limits of work and pressure gain in combustion and evaporation processes
,”
J. Propul. power
18
,
1176
1182
(
2002
).
20.
V.
Athmanathan
,
J.
Braun
,
Z.
Ayers
,
J.
Fisher
,
C. A.
Fugger
,
S.
Roy
,
G.
Paniagua
, and
T. R.
Meyer
, “
Detonation structure evolution in an optically-accessible non-premixed H2-air RDC using MHz rate imaging
,” in AIAA Paper No. AIAA 2020-1178,
2020
.
21.
P.
Wolański
, “
Detonation engines
,”
J. Kones
18
,
515
521
(
2011
).
22.
S.
Zhou
,
H.
Ma
,
Y.
Ma
,
C.
Zhou
, and
N.
Hu
, “
Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine
,”
Aerosp. Sci. Technol.
111
,
106559
(
2021
).
23.
Y.-H.
Wang
,
J.-P.
Wang
,
T.-Y.
Shi
, and
Y.-S.
Liu
, “
Experimental research on transition regions in continuously rotating detonation waves
,” AIAA Paper No. AIAA 2012-3946,
2012
.
24.
W.
Lin
,
J.
Zhou
,
S.
Liu
, and
Z.
Lin
, “
An experimental study on ch4/o2 continuously rotating detonation wave in a hollow combustion chamber
,”
Exp. Therm. Fluid Sci.
62
,
122
130
(
2015
).
25.
Y.
Wang
,
J.
Wang
,
T.
Shi
,
Y.
Liu
,
Y.
Li
, and
Y.
Li
, “
Discovery of breathing phenomena in continuously rotating detonation
,”
Procedia Eng.
67
,
188
196
(
2013
).
26.
J.
Han
,
Q.
Bai
,
S.
Zhang
, and
C.
Weng
, “
Experimental study on propagation mode of rotating detonation wave with cracked kerosene gas and ambient temperature air
,”
Phys. Fluids
34
,
075127
(
2022
).
27.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
On the mechanisms of the multiplicity and bifurcation of detonation waves in 3D rotating detonation engines
,”
Aerosp. Sci. Technol.
130
,
107874
(
2022
).
28.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
29.
B. A.
Rankin
,
M.
Fotia
,
D. E.
Paxson
,
J.
Hoke
, and
F.
Schauer
, “
Experimental and numerical evaluation of pressure gain combustion in a rotating detonation engine
,” AIAA Paper No. AIAA 2015-0877,
2015
.
30.
D.
Schwer
and
K.
Kailasanath
, “
Numerical investigation of the physics of rotating-detonation-engines
,”
Proc. Combust. Inst.
33
,
2195
2202
(
2011
).
31.
Y.
Zhang
,
Z.
Sheng
,
G.
Rong
,
D.
Shen
,
K.
Wu
, and
J.
Wang
, “
Experimental research on the performance of hollow and annular rotating detonation engines with nozzles
,”
Appl. Therm. Eng.
218
,
119339
(
2023
).
32.
Z.
Ma
,
S.
Zhang
,
M.
Luan
,
S.
Yao
,
Z.
Xia
, and
J.
Wang
, “
Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine
,”
Int. J. Hydrogen Energy
43
,
18521
18529
(
2018
).
33.
J. Z.
Ma
,
S.
Zhang
,
M.
Luan
, and
J.
Wang
, “
Experimental investigation on delay time phenomenon in rotating detonation engine
,”
Aerosp. Sci. Technol.
88
,
395
404
(
2019
).
34.
K.
Wu
,
S.-J.
Zhang
,
D.-W.
She
, and
J.-P.
Wang
, “
Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor
,”
Phys. Fluids
33
,
126112
(
2021
).
35.
X.-Y.
Liu
,
Y.-L.
Chen
,
Z.-J.
Xia
, and
J.-P.
Wang
, “
Numerical study of the reverse-rotating waves in rotating detonation engine with a hollow combustor
,”
Acta Astronaut.
170
,
421
430
(
2020
).
36.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
The behavior of the propagating velocity of rotating detonation waves and counter-rotating shock waves in a hollow combustor
,”
Acta Astronaut.
200
,
371
387
(
2022
).
37.
S. A.
Boller
, “
Flow behavior in radial rotating detonation engines
,”
Technical Report
(
Air Force Institute of Technology
,
Wright-Patterson AFB, OH
,
2019
).
38.
J.
Tellefsen
,
P.
King
,
F.
Schauer
, and
J.
Hoke
, “
Analysis of an RDE with convergent nozzle in preparation for turbine integration
,” AIAA Paper No. AIAA 2012-773,
2012
.
39.
D.
Davidenko
,
I.
Gökalp
, and
A.
Kudryavtsev
, “
Numerical study of the continuous detonation wave rocket engine
,” AIAA Paper No. AIAA 2008-2680,
2008
.
40.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonation in annular combustors
,”
Combust., Explos. Shock Waves
41
,
449
459
(
2005
).
41.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
1216
(
2006
).
42.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region
,”
Combust., Explos., Shock Waves
46
,
52
59
(
2010
).
43.
J.
Kindracki
,
P.
Wolański
, and
Z.
Gut
, “
Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures
,”
Shock Waves
21
,
75
84
(
2011
).
44.
M.
Hishida
,
T.
Fujiwara
, and
P.
Wolanski
, “
Fundamentals of rotating detonations
,”
Shock Waves
19
,
1
10
(
2009
).
45.
G.
Paniagua
,
M.
Iorio
,
N.
Vinha
, and
J.
Sousa
, “
Design and analysis of pioneering high supersonic axial turbines
,”
Int. J. Mech. Sci.
89
,
65
77
(
2014
).
46.
J.
Sousa
,
J.
Braun
, and
G.
Paniagua
, “
Development of a fast evaluation tool for rotating detonation combustors
,”
Appl. Math. Modell.
52
,
42
52
(
2017
).
47.
C.
Colclough
, “
Design of turbine blades suitable for supersonic relative inlet velocities and the investigation of their performance in cascades: Part I—theory and design
,”
J. Mech. Eng. Sci.
8
,
110
128
(
1966
).
48.
J.
Sousa
and
G.
Paniagua
, “
Entropy minimization design approach of supersonic internal passages
,”
Entropy
17
,
5593
5610
(
2015
).
49.
J.
Sousa
,
E.
Collado-Morata
, and
G.
Paniagua
, “
Design and optimization of supersonic turbines for detonation combustors
,”
Chin. J. Aeronaut.
35
,
33
(
2022
).
50.
Z.
Liu
,
J.
Braun
, and
G.
Paniagua
, “
Characterization of a supersonic turbine downstream of a rotating detonation combustor
,”
J. Eng. Gas Turbines Power
141
,
031501
(
2019
).
51.
Z.
Liu
,
J.
Braun
, and
G.
Paniagua
, “
Performance of axial turbines exposed to large fluctuations
,” in
53rd AIAA/SAE/ASEE Joint Propulsion Conference
(AIAA,
2017
) p.
4817
.
52.
L.
Su
,
F.
Wen
,
C.
Wan
,
Z.
Li
,
J.
Han
,
S.
Wang
, and
Z.
Wang
, “
Large eddy simulation study of rotating detonation supersonic turbine nozzle generated by method of characteristics under oscillating incoming flow
,”
Phys. Fluids
34
,
116119
(
2022
).
53.
Q.
Li
,
Y.
Wu
,
Y.
Xia
,
X.
Li
, and
C.
Weng
, “
Numerical investigation on the interactions between rotating detonation wave complex and planar turbine cascade
,”
Energy Sci. Eng.
11
,
410
(
2023
).
54.
P.
Wolański
, “
Application of the continuous rotating detonation to gas turbine
,”
Appl. Mech. Mater.
782
,
3
12
(
2015
).
55.
N.
DeBarmore
,
P.
King
,
F.
Schauer
, and
J.
Hoke
, “
Nozzle guide vane integration into rotating detonation engine
,” AIAA Paper No. AIAA 2013-1030,
2013
.
56.
D.
Shen
,
M.
Cheng
,
K.
Wu
,
Z.
Sheng
, and
J.
Wang
, “
Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor
,”
Acta Astronaut.
193
,
90
99
(
2022
).
57.
E.
Bach
,
C. O.
Paschereit
,
P.
Stathopoulos
, and
M. D.
Bohon
, “
Rotating detonation wave direction and the influence of nozzle guide vane inclination
,”
AIAA J.
59
,
5276
5287
(
2021
).
58.
S.
Zhou
,
H.
Ma
,
Y.
Yang
, and
C.
Zhou
, “
Investigation on propagation characteristics of rotating detonation wave in a radial-flow turbine engine combustor model
,”
Acta Astronaut.
160
,
15
24
(
2019
).
59.
S.
Zhou
,
H.
Ma
,
Y.
Ma
,
C.
Zhou
,
D.
Liu
, and
S.
Li
, “
Experimental study on a rotating detonation combustor with an axial-flow turbine
,”
Acta Astronaut.
151
,
7
14
(
2018
).
60.
S.
Zhou
,
H.
Ma
,
S.
Li
,
D.
Liu
,
Y.
Yan
, and
C.
Zhou
, “
Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics
,”
Int. J. Hydrogen Energy
42
,
20297
20305
(
2017
).
61.
C.
Zhang
,
Z.
Lin
, and
T.
Dong
, “
Numerical study on the interaction characterization of rotating detonation wave and turbine rotor blades
,”
Int. J. Hydrogen Energy
47
,
6898
6910
(
2022
).
62.
D. N.
Williams
,
L.
Bauwens
, and
E. S.
Oran
, “
Detailed structure and propagation of three-dimensional detonations
,” in
Symposium (International) on Combustion
(
Elsevier
,
1996
), Vol.
26
, pp.
2991
2998
.
63.
F.
Ma
,
J.-Y.
Choi
, and
V.
Yang
, “
Propulsive performance of airbreathing pulse detonation engines
,”
J. Propul. Power
22
,
1188
1203
(
2006
).
64.
B. A.
Rankin
,
D. R.
Richardson
,
A. W.
Caswell
,
A. G.
Naples
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine
,”
Combust. Flame
176
,
12
22
(
2017
).
65.
H.
Zheng
,
Q.
Meng
,
N.
Zhao
,
Z.
Li
, and
F.
Deng
, “
Numerical investigation on H2/air non-premixed rotating detonation engine under different equivalence ratios
,”
Int. J. Hydrogen Energy
45
,
2289
2307
(
2020
).
You do not currently have access to this content.