The hydrogen/air rotating detonation turbine engine has the advantages of self-supercharging, small entropy increase, high thermal efficiency, high thrust-to-weight ratio, low fuel consumption, and low carbon emissions. However, the high-frequency and high-speed oscillation characteristics of the outflow of the rotating detonation combustor pose challenges for the turbine to extract work efficiently. In this study, a supersonic turbine stage designed using the Python code of the method of characteristics coupled with a two-dimensional rotating detonation combustor is numerically investigated. The propagation characteristics of the detonation wave in the aligned mode and misaligned mode and interaction with the supersonic turbine stage are carefully discussed. The results show that the coupling of the supersonic turbine stage and the rotating detonation combustor will cause the detonation wave to change from a single-wave mode to a three-wave co-propagating mode. The Kelvin–Helmholtz instability of the slip line increases after passing through the induced oblique shock. In the multi-wave mode, the detonation wave is self-adaptive, and multiple detonation waves interact to automatically adjust the propagation velocity, intensity, and distance of each detonation wave, and finally achieve a dynamic balance. The supersonic turbine stage has good operating performance under the condition of rotating detonation flow, its power level can reach 110 kW, and the maximum stagnation adiabatic efficiency of the supersonic turbine stage can reach 86%. The supersonic turbine guide vanes can greatly reduce the oscillation amplitude of the incoming flow. In the aligned mode, the supersonic turbine guide vanes has a more obvious effect of suppressing the amplitude of the incoming flow. The total pressure loss of the supersonic turbine stage is smaller, and the supersonic turbine rotor can extract work more efficiently in the aligned mode. These findings provide a valuable reference for further research on the hydrogen/air rotating detonation turbine engine, ultimately leading to the practical application of an energy-saving, high-efficiency, and low-emission hydrogen/air rotating detonation turbine engine.

1.
X.
Ni
,
H.
Xu
,
X.
Su
,
B.
Xiao
,
F.
Zhang
,
Y.
Luo
,
Q.
Zheng
, and
C.
Weng
, “
Effects of different physical properties of anthracite powder fuel on detonation characteristics of a rotating detonation engine
,”
Phys. Fluids
35
,
053325
(
2023
).
2.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical study of the mechanisms of the longitudinal pulsed detonation in two-dimensional rotating detonation combustors
,”
Phys. Fluids
35
,
036123
(
2023
).
3.
K.
Wu
,
S.-J.
Zhang
,
D.-W.
She
, and
J.-P.
Wang
, “
Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor
,”
Phys. Fluids
33
,
126112
(
2021
).
4.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
,
126102
(
2020
).
5.
A.
Kantrowitz
et al,
Preliminary Investigation of Supersonic Diffusers
(
National Advisory Committee for Aeronautics
,
1945
).
6.
C.
Colclough
, “
Design of turbine blades suitable for supersonic relative inlet velocities and the investigation of their performance in cascades. I. Theory and design
,”
J. Mech. Eng. Sci.
8
,
110
128
(
1966
).
7.
G.
Paniagua
,
M.
Iorio
,
N.
Vinha
, and
J.
Sousa
, “
Design and analysis of pioneering high supersonic axial turbines
,”
Int. J. Mech. Sci.
89
,
65
77
(
2014
).
8.
J.
Sousa
and
G.
Paniagua
, “
Entropy minimization design approach of supersonic internal passages
,”
Entropy
17
,
5593
5610
(
2015
).
9.
J.
Sousa
,
G.
Paniagua
, and
E. C.
Morata
, “
Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor
,”
Appl. Energy
195
,
247
256
(
2017
).
10.
J.
Sousa
,
J.
Braun
, and
G.
Paniagua
, “
Development of a fast evaluation tool for rotating detonation combustors
,”
Appl. Math. Modell.
52
,
42
52
(
2017
).
11.
L.
Su
,
F.
Wen
,
C.
Wan
,
Z.
Li
,
J.
Han
,
S.
Wang
, and
Z.
Wang
, “
Large-eddy simulation study of rotating detonation supersonic turbine nozzle generated by the method of characteristics under oscillating incoming flow
,”
Phys. Fluids
34
,
116119
(
2022
).
12.
N.
Mushtaq
,
G.
Colella
, and
P.
Gaetani
, “
Design and parametric analysis of a supersonic turbine for rotating detonation engine applications
,”
Int. J. Turbomach. Propul. Power
7
,
1
(
2022
).
13.
Z.
Liu
,
J.
Braun
, and
G.
Paniagua
, “
Characterization of a supersonic turbine downstream of a rotating detonation combustor
,”
J. Eng. Gas Turbines Power
141
,
031501
(
2019
).
14.
Z.
Liu
,
J.
Braun
, and
G.
Paniagua
, “
Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with optimized endwalls
,”
Int. J. Mech. Sci.
188
,
105918
(
2020
).
15.
R.
Zhou
,
D.
Wu
, and
J.
Wang
, “
Progress of continuously rotating detonation engines
,”
Chin. J. Aeronaut.
29
,
15
29
(
2016
).
16.
C.
Ishiyama
,
K.
Miyazaki
,
S.
Nakagami
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
, and
I.
Funaki
, “
Experimental study of research of centrifugal-compressor-radial-turbine type rotating detonation engine
,” AIAA Paper No. 2016-5103,
2016
, p.
5103
.
17.
J.
Higashi
,
C.
Ishiyama
,
S.
Nakagami
et al, “
Experimental study of disk-shaped rotating detonation turbine engine
,” AIAA Paper No. 2017-1286,
2017
.
18.
P.
Wolański
, “
Application of the continuous rotating detonation to gas turbine
,” in
Experimental Mechanics and Effects of Intensive Loading
, Applied Mechanics and Materials (
Trans Tech Publications Ltd.
,
2015
), Vol.
782
, pp.
3
12
.
19.
N.
DeBarmore
,
P.
King
,
F.
Schauer
, and
J.
Hoke
, “
Nozzle guide vane integration into rotating detonation engine
,” AIAA Paper No. 2013-1030,
2013
.
20.
D. J.
Welsh
,
P.
King
,
F.
Schauer
, and
J.
Hoke
, “
RDE integration with T63 turboshaft engine components
,” AIAA Paper No. 2014-1316,
2014
, p.
1316
.
21.
A.
Naples
,
J.
Hoke
, and
F.
Schauer
, “
Rotating detonation engine interaction with an annular ejector
,” AIAA Paper No. 2014-0287,
2014
, p.
0287
.
22.
J.
Tellefsen
,
P.
King
,
F.
Schauer
, and
J.
Hoke
, “
Analysis of an RDE with convergent nozzle in preparation for turbine integration
,” AIAA Paper No. 2012-773,
2012
, p.
773
.
23.
S.
Claflin
,
S.
Sonwane
,
E.
Lynch
, and
J.
Stout
, “
Recent advances in power cycles using rotating detonation engines with subcritical and supercritical co2
,” in
Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles
, PA (
2014
).
24.
A.
Naples
,
J.
Hoke
,
R. T.
Battelle
,
M.
Wagner
, and
F. R.
Schauer
, “
RDE implementation into an open-loop T63 gas turbine engine
,” AIAA Paper No. 2017-1747,
2017
, p.
1747
.
25.
A.
Naples
,
J.
Hoke
,
R.
Battelle
, and
F.
Schauer
, “
T63 turbine response to rotating detonation combustor exhaust flow
,”
J. Eng. Gas Turbines Power
141
,
021029
(
2019
).
26.
H.
Rhee
,
C.
Ishiyama
,
J.
Higashi
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
, and
I.
Funaki
, “
Experimental study on a rotating detonation turbine engine with an axial turbine
,” in
Proceedings of the 26th ICDERS
(ICDERS,
2017
), pp.
1
6
.
27.
W.-L.
Wei
,
Y.-W.
Wu
,
C.-S.
Weng
, and
Q.
Zheng
, “
Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane
,”
Def. Technol.
17
,
1617
1624
(
2021
).
28.
B.
Ji
,
Z.
Wang
, and
J.
Li
, “
Analysis of unsteady flow field in rotating detonation turbine engine
,”
J. Phys.: Conf. Ser.
1750
,
012070
(
2021
).
29.
F.
Bakhtiari
and
H.-P.
Schiffer
, “
Numerical approach to the modelling of transient interaction of prospective combustor concepts and conventional high pressure turbines
,”
Propul. Power Res.
8
,
1
12
(
2019
).
30.
C.
Zhang
,
Z.
Lin
, and
T.
Dong
, “
Numerical study on the interaction characterization of rotating detonation wave and turbine rotor blades
,”
Int. J. Hydrogen Energy
47
,
6898
6910
(
2022
).
31.
Q.
Li
,
Y.
Wu
,
Y.
Xia
,
X.
Li
, and
C.
Weng
, “
Numerical investigation on the interactions between rotating detonation wave complex and planar turbine cascade
,”
Energy Sci. Eng.
11
,
410
429
(
2023
).
32.
E.
Bach
,
C. O.
Paschereit
,
P.
Stathopoulos
, and
M. D.
Bohon
, “
Rotating detonation wave direction and the influence of nozzle guide vane inclination
,”
AIAA J.
59
,
5276
5287
(
2021
).
33.
M.
Asli
,
C.
Cuciumita
,
P.
Stathopoulos
, and
C. O.
Paschereit
, “
Numerical investigation of a turbine guide vane exposed to rotating detonation exhaust flow
,” in
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2019
), Vol.
58561
, p.
V02BT40A018
.
34.
M.
Asli
,
P.
Stathopoulos
, and
C. O.
Paschereit
, “
Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor
,”
J. Eng. Gas Turbines Power
143
,
061011
(
2021
).
35.
J.
Braun
,
D. G.
Cuadrado
,
V.
Andreoli
,
G.
Paniagua
,
Z.
Liu
,
J.
Saavedra
,
V.
Athmanathan
, and
T.
Meyer
, “
Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor
,” AIAA Paper No. 2019-3873,
2019
, p.
3873
.
36.
E.
Bach
,
M.
Bohon
,
C. O.
Paschereit
, and
P.
Stathopoulos
, “
Development of an instrumented guide vane set for RDC exhaust flow characterization
,” in
Proceedings of the 2018 Joint Propulsion Conference
(AIAA,
2018
), p.
4479
.
37.
E.
Bach
,
M.
Bohon
,
C. O.
Paschereit
, and
P.
Stathopoulos
, “
Influence of nozzle guide vane orientation relative to RDC wave direction
,” AIAA Paper No. 2019-3870,
2019
, p.
3870
.
38.
E.
Bach
,
P.
Stathopoulos
,
C. O.
Paschereit
, and
M. D.
Bohon
, “
Performance analysis of a rotating detonation combustor based on stagnation pressure measurements
,”
Combust. Flame
217
,
21
36
(
2020
).
39.
D.
Shen
,
M.
Cheng
,
K.
Wu
,
Z.
Sheng
, and
J.
Wang
, “
Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor
,”
Acta Astronaut.
193
,
90
99
(
2022
).
40.
R. T.
Huff
,
S. A.
Boller
,
M. D.
Polanka
,
F. R.
Schauer
,
M. L.
Fotia
, and
J. L.
Hoke
, “
Radial rotating detonation engine driven bleed air turbine
,”
J. Propul. Power
37
,
252
260
(
2021
).
41.
E.
Bach
,
M. D.
Bohon
,
C. O.
Paschereit
, and
P.
Stathopoulos
, “
Impact of outlet restriction on RDC performance and stagnation pressure rise
,” AIAA Paper No. 2019-0476,
2019
, p.
0476
.
42.
S.
Zhou
,
H.
Ma
,
Y.
Yang
, and
C.
Zhou
, “
Investigation on propagation characteristics of rotating detonation wave in a radial-flow turbine engine combustor model
,”
Acta Astronaut.
160
,
15
24
(
2019
).
43.
S.
Zhou
,
H.
Ma
,
Y.
Ma
,
C.
Zhou
,
D.
Liu
, and
S.
Li
, “
Experimental study on a rotating detonation combustor with an axial-flow turbine
,”
Acta Astronaut.
151
,
7
14
(
2018
).
44.
S.
Zhou
,
H.
Ma
,
Y.
Ma
,
C.
Zhou
, and
N.
Hu
, “
Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine
,”
Aerosp. Sci. Technol.
111
,
106559
(
2021
).
45.
Y.
Wu
,
C.
Weng
,
Q.
Zheng
,
W.
Wei
, and
Q.
Bai
, “
Experimental research on the performance of a rotating detonation combustor with a turbine guide vane
,”
Energy
218
,
119580
(
2021
).
46.
J.
Sousa
,
E.
Collado-Morata
, and
G.
Paniagua
, “
Design and optimization of supersonic turbines for detonation combustors
,”
Chin. J. Aeronaut.
35
,
33
44
(
2022
).
47.
D. N.
Williams
,
L.
Bauwens
, and
E. S.
Oran
, “
Detailed structure and propagation of three-dimensional detonations
,”
Symp. Combust.
26
,
2991
2998
(
1996
).
48.
F.
Ma
,
J. Y.
Choi
, and
V.
Yang
, “
Propulsive performance of airbreathing pulse detonation engines
,”
J. Propul. Power
22
,
1188
1203
(
2006
).
49.
B.
Maxwell
and
J.
Melguizo-Gavilanes
, “
Origins of instabilities in turbulent mixing layers behind detonation propagation into reactive-inert gas interfaces
,”
Phys. Fluids
34
,
106107
(
2022
).
50.
Z.
Ma
,
S.
Zhang
,
M.
Luan
,
S.
Yao
,
Z.
Xia
, and
J.
Wang
, “
Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine
,”
Int. J. Hydrogen Energy
43
,
18521
18529
(
2018
).
You do not currently have access to this content.