A numerical simulation study was performed to examine the post-detonation reaction processes produced by the detonation of a 12 mm diameter hemispherical pentaerythritol tetranitrate (PETN) explosive charge. The simulations used a finite rate detailed chemical reaction model consisting of 59 species and 368 reactions to capture post-detonation reaction processes including air dissociation from Mach 19+ shock waves that initially break out of the PETN charge, reactions within the detonation products during expansion, and afterburning when the detonation products mix with the shock heated air. The multi-species and thermodynamically complete Becker–Kistiakowsky–Wilson real-gas equation of state is used for the gaseous phase to allow for the mixing of reactive species. A recent simplified reactive burn model is used to propagate the detonation through the charge and allow for detailed post-detonation reaction processes. The computed blast, shock structures, and mole fractions of species within the detonation products agree well with experimental measurements. A comparison of the simulation results to equilibrium calculations indicates that the assumption of a local equilibrium is fairly accurate until the detonation products rapidly cool to temperatures in the range of 1500–1900 K by expansion waves. Below this range, the computed results show mole fractions that are nearly chemically frozen within the detonation products for a significant portion of expansion. These results are consistent with the freeze out approximation used in the blast modeling community.

1.
A. L.
Kuhl
,
J. B.
Bell
,
V. E.
Beckner
,
K.
Balakrishnan
, and
A.
Aspden
, “
Spherical combustion clouds in explosions
,”
Shock Waves
23
,
233
249
(
2013
).
2.
L.
Donahue
,
F.
Zhang
, and
R.
Ripley
, “
Numerical models for afterburning of TNT detonation products in air
,”
Shock Waves
23
,
559
573
(
2013
).
3.
A.
Kuhl
, “
Mixing in explosions
,”
Report No. UCRL-JC-115690
(
Lawrence Livermore National Laboratory
,
El Segundo, CA
,
1993
).
4.
A. L.
Kuhl
, “
Spherical mixing layers in explosions
,” in
Dynamics of Exothermicity
(
Gordon and Breach Publishers
,
1996
), Vol.
2
, pp.
291
323
.
5.
F. F.
Grinstein
,
Coarse Grained Simulation and Turbulent Mixing
(
Cambridge University Press
,
2016
).
6.
A.
Kuhl
,
J.
Bell
, and
V.
Beckner
, “
Heterogeneous continuum model of aluminum particle combustion in explosions
,”
Combust., Explos., Shock Waves
46
,
433
448
(
2010
).
7.
A.
Kuhl
,
J.
Bell
,
V.
Beckner
, and
H.
Reichenbach
, “
Gasdynamic model of turbulent combustion in TNT explosions
,”
Proc. Combust. Inst.
33
,
2177
2185
(
2011
).
8.
A.
Kuhl
and
K.
Balakrishnan
, “
Gasdynamic model of dilute two-phase combustion fields
,”
Combust., Explos., Shock Waves
48
,
544
560
(
2012
).
9.
D.
Grote
,
A. L.
Kuhl
,
J. B.
Bell
, and
V. E.
Beckner
, “
Modeling optical emissions from HE fireballs
,” in
Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)
(
2015
).
10.
E.
Fedina
and
C.
Fureby
, “
Analysis of heat-release during TNT/aluminum afterburning by means of numerical simulations
,”
Proc. Combust. Inst.
36
,
2841
2848
(
2017
).
11.
S.
Courtiaud
,
N.
Lecysyn
,
G.
Damamme
,
T.
Poinsot
, and
L.
Selle
, “
Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres
,”
Shock Waves
29
,
339
353
(
2019
).
12.
A.
Kuhl
,
D.
Grote
, and
J.
Bell
, “
Scaling turbulent combustion fields in explosions
,”
Appl. Sci.
10
,
8577
(
2020
).
13.
J. W.
Posey
,
B.
Roque
,
S.
Guhathakurta
, and
R. W.
Houim
, “
Mechanisms of prompt and delayed ignition and combustion of explosively dispersed aluminum powder
,”
Phys. Fluids
33
,
113308
(
2021
).
14.
T.
Tran
,
R.
Simpson
,
J.
Maienschein
, and
C.
Tarver
, “
Thermal decomposition of trinitrotoluene (TNT) with a new one-dimensional time to explosion (ODTX) apparatus
,”
Report No. UCRL-JC-141597
(
Lawrence Livermore National Laboratory
,
Livermore, CA
,
2001
).
15.
E.
Fedina
,
C.
Fureby
,
G.
Bulat
, and
W.
Meier
, “
Assessment of finite rate chemistry large eddy simulation combustion models
,”
Flow, Turbul. Combust.
99
,
385
409
(
2017
).
16.
R. W.
Houim
and
B. D.
Taylor
, “
Detonation initiation from shock and material interface interactions in hydrogen-air mixtures
,”
Proc. Combust. Inst.
37
,
3513
3520
(
2019
).
17.
J.
Fujii
,
Y.
Kumazawa
,
A.
Matsuo
,
S.
Nakagami
,
K.
Matsuoka
, and
J.
Kasahara
, “
Numerical investigation on detonation velocity in rotating detonation engine chamber
,”
Proc. Combust. Inst.
36
,
2665
2672
(
2017
).
18.
N.
Tsuboi
,
S.
Eto
,
A. K.
Hayashi
, and
T.
Kojima
, “
Front cellular structure and thrust performance on hydrogen–oxygen rotating detonation engine
,”
J. Propul. Power
33
,
100
111
(
2017
).
19.
C.
Yan
,
H. D.
Ng
, and
X.
Mi
, “
A numerical study on the influence of increased instability of quasi-detonation on the critical tube diameter phenomenon
,”
Proc. Combust. Inst.
(published online).
20.
P.
Honhar
,
C. R.
Kaplan
,
R. W.
Houim
, and
E. S.
Oran
, “
Role of reactivity gradients in the survival, decay and reignition of methane-air detonations in large channels
,”
Combust. Flame
222
,
152
169
(
2020
).
21.
B.
Maxwell
and
J.
Melguizo-Gavilanes
, “
Origins of instabilities in turbulent mixing layers behind detonation propagation into reactive–inert gas interfaces
,”
Phys. Fluids
34
,
106107
(
2022
).
22.
F.
Wang
and
C.
Weng
, “
Numerical research on two-phase kerosene/air rotating detonation engines
,”
Acta Astronaut.
192
,
199
209
(
2022
).
23.
N.
Jourdaine
,
N.
Tsuboi
, and
A. K.
Hayashi
, “
Investigation of liquid n-heptane/air spray detonation with an Eulerian-Eulerian model
,”
Combust. Flame
244
,
112278
(
2022
).
24.
Q.
Meng
,
M.
Zhao
,
Y.
Xu
,
L.
Zhang
, and
H.
Zhang
, “
Structure and dynamics of spray detonation in n-heptane droplet/vapor/air mixtures
,”
Combust. Flame
249
,
112603
(
2023
).
25.
M.
Soo
and
N.
Glumac
, “
Ultraviolet absorption spectroscopy in optically dense fireballs using broadband second-harmonic generation of a pulsed modeless dye laser
,”
Appl. Spectrosc.
68
,
517
524
(
2014
).
26.
C.
Murzyn
,
A.
Sims
,
H.
Krier
, and
N.
Glumac
, “
High speed temperature, pressure, and water vapor concentration measurement in explosive fireballs using tunable diode laser absorption spectroscopy
,”
Opt. Lasers Eng.
110
,
186
192
(
2018
).
27.
M.
Soo
,
C.
Murzyn
,
A.
Sims
,
J.
Cerow
,
N.
Glumac
,
J.
Ott
,
M.
De Magistris
,
N.
Sinha
, and
J.
Lightstone
, “
Measurement of temperature and water vapor concentration using laser absorption spectroscopy in kilogram-scale explosive fireballs
,”
AIP Conf. Proc.
2272
,
060034
(
2020
).
28.
D. R.
Richardson
,
S. P.
Kearney
, and
D. R.
Guildenbecher
, “
Post-detonation fireball thermometry via femtosecond-picosecond coherent anti-Stokes Raman scattering (CARS)
,”
Proc. Combust. Inst.
38
,
1657
1664
(
2021
).
29.
G. C.
Mathews
,
M.
Gomez
,
C. J.
Schwartz
,
A. A.
Egeln
, Jr.
,
R. W.
Houim
,
S. F.
Son
,
M.
Arienti
,
A. D.
Thompson
,
M.
Welliver
,
D. R.
Guildenbecher
et al, “
Experimental and synthetic laser-absorption-spectroscopy measurements of temperature, pressure, and CO at 1 MHz for evaluation of post-detonation fireball models
,”
Proc. Combust. Inst.
(published online).
30.
C. J.
Schwartz
,
J. W.
Stiborek
,
A.
Butler
,
D.
Chen
,
D. R.
Guildenbecher
,
M.
Welliver
,
N.
Glumac
, and
C. S.
Goldenstein
, “
Near-MHz temperature and H2O measurements in post-detonation fireballs of 25 g hemispherical explosives using scanned-wavelength-modulation spectroscopy
,”
Appl. Opt.
62
,
1598
1609
(
2023
).
31.
G. I.
Taylor
, “
The dynamics of the combustion products behind plane and spherical detonation fronts in explosives
,”
Proc. R. Soc. London Ser. A
200
,
235
247
(
1950
).
32.
J. M.
McGlaun
,
S.
Thompson
, and
M.
Elrick
, “
CTH: A three-dimensional shock wave physics code
,”
Int. J. Impact Eng.
10
,
351
360
(
1990
).
33.
E.
Hertel
,
R.
Bell
,
M.
Elrick
,
A.
Farnsworth
,
G.
Kerley
,
J.
McGlaun
,
S.
Petney
,
S.
Silling
,
P.
Taylor
, and
L.
Yarrington
, “
CTH: A software family for multi-dimensional shock physics analysis
,” in
Shock Waves@ Marseille I: Hypersonics, Shock Tube & Shock Tunnel Flow
(
Springer
,
1995
), pp.
377
382
.
34.
Z. S.
Tabatabaei
and
J. S.
Volz
, “
A comparison between three different blast methods in LS-DYNA: LBE, MM-ALE, coupling of LBE and MM-ALE
,” in
12th International LS-DYNA Users Conference
(
2012
), pp.
1
10
.
35.
R.
Houim
, “
A simplified reactive burn model for simulating explosive effects—I: Single-phase blasts
,”
Shock Waves
31
,
851
875
(
2021
).
36.
M.
Hobbs
and
M.
Baer
, “
Nonideal thermoequilibrium calculations using a large product species data base
,”
Shock Waves
2
,
177
187
(
1992
).
37.
M.
Hobbs
and
M.
Baer
, “
Calibrating the BKW-EOS with a large product species data base and measured C-J properties
,” in
Tenth Symposium (International) on Detonation
, Boston, MA (
1993
).
38.
C. B.
Conner
and
W. R.
Anderson
, “
Modeling the combustion of JA2 and solid propellants of similar composition
,”
Proc. Combust. Inst.
32
,
2131
2137
(
2009
).
39.
M. L.
Hobbs
,
R. G.
Schmitt
, and
H. K.
Moffat
, “
JCZS3—An improved database for EOS calculations
,”
Report No. SAND2018-6389C
(
Sandia National Laboratory
,
Albuquerque, NM
,
2018
).
40.
C. K.
Westbrook
and
F. L.
Dryer
, “
Chemical kinetic modeling of hydrocarbon combustion
,”
Prog. Energy Combust. Sci.
10
,
1
57
(
1984
).
41.
M.
Cowperthwaite
and
W.
Zwisler
, “
TIGER computer program documentation
,”
Report No. ADA002791
(
Naval Ordnance Laboratory
,
Corona CA
,
1974
).
42.
D. L.
Ornellas
,
J. H.
Carpenter
, and
S. R.
Gunn
, “
Detonation calorimeter and results obtained with pentaerythritol tetranitrate (PETN)
,”
Rev. Sci. Instrum.
37
,
907
912
(
1966
).
43.
F. H.
Ree
, “
A statistical mechanical theory of chemically reacting multiphase mixtures: Application to the detonation properties of PETN
,”
J. Chem. Phys.
81
,
1251
1263
(
1984
).
44.
D.
Ornellas
, “
Calorimetric determinations of the heat and products of detonation for explosives: October 1961 to April 1982
,”
Report No. UCRL-52821
(
California University Berkeley Lawrence Livermore Laboratory
,
1982
).
45.
S.
Bastea
, “
Chemical equilibrium and carbon kinetics in explosives
,” in
Proceedings of the 15th International Detonation Symposium
(
Office of Naval Research
,
San Francisco, CA
,
2014
), p.
896
.
46.
S.
Thiboutot
,
P.
Brousseau
, and
G.
Ampleman
, “
Deposition of PETN following the detonation of seismoplast plastic explosive
,”
Propellants, Explos., Pyrotech.
40
,
329
332
(
2015
).
47.
N. M.
O'Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchison
, “
Open Babel: An open chemical toolbox
,”
J. Cheminf.
3
,
33
(
2011
).
48.
B. J.
McBride
,
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
(
National Aeronautics and Space Administration
,
2002
).
49.
A. L.
Kuhl
and
B.
Khasainov
, “
Quadractic model of thermodynamic states in SDF explosions
,”
Report No. UCRL-CONF-231294
(
Lawrence Livermore National Laboratory
,
Livermore, CA
,
2007
).
50.
J. F.
Baytos
, “
Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally
,”
Report No. LA-8034-MS
(
Los Alamos Scientific Laboratory
,
NM
,
1979
).
51.
N.
Bergan
,
P.
Butler
, and
H.
Dwyer
, “
CHEMKIN real-gas: A FORTRAN package for analysis of thermodynamics and chemical kinetics in high-pressure systems
,”
Report No. SAND91-8634
(
Sandia National Laboratory
,
1991
).
52.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O'Connell
,
Properties of Gases and Liquids
(
McGraw-Hill Education
,
2001
).
53.
D.
Chen
,
K.
Wang
, and
H.
Wang
, “
Violation of collision limit in recently published reaction models
,”
Combust. Flame
186
,
208
210
(
2017
).
54.
B.
Thornber
,
A.
Mosedale
,
D.
Drikakis
,
D.
Youngs
, and
R. J.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
4894
(
2008
).
55.
Z.
Shen
,
W.
Yan
, and
G.
Yuan
, “
A robust HLLC-type Riemann solver for strong shock
,”
J. Comput. Phys.
309
,
185
206
(
2016
).
56.
R. J.
Spiteri
and
S. J.
Ruuth
, “
A new class of optimal high-order strong-stability-preserving time discretization methods
,”
SIAM J. Numer. Anal.
40
,
469
491
(
2002
).
57.
P. N.
Brown
,
G. D.
Byrne
, and
A. C.
Hindmarsh
, “
VODE: A variable-coefficient ODE solver
,”
SIAM J. Sci. Stat. Comput.
10
,
1038
1051
(
1989
).
58.
W.
Zhang
,
A.
Almgren
,
V.
Beckner
,
J.
Bell
,
J.
Blaschke
,
C.
Chan
,
M.
Day
,
B.
Friesen
,
K.
Gott
,
D.
Graves
et al, “
AMReX: A framework for block-structured adaptive mesh refinement
,”
J. Open Source Software
4
,
1370
1370
(
2019
).
59.
R. W.
Houim
and
K. K.
Kuo
, “
A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios
,”
J. Comput. Phys.
230
,
8527
8553
(
2011
).
60.
R. W.
Houim
and
E. S.
Oran
, “
A multiphase model for compressible granular–gaseous flows: Formulation and initial tests
,”
J. Fluid Mech.
789
,
166
220
(
2016
).
61.
J. D.
Koch
,
S.
Piecuch
,
J. M.
Lightstone
,
J. R.
Carney
, and
J.
Hooper
, “
Time-resolved measurements of near infrared emission spectra from explosions: Pure pentaerythritol tetranitrate and its mixtures containing silver and aluminum particles
,”
J. Appl. Phys.
108
,
036101
(
2010
).
62.
A.
Kuhl
,
R.
Ferguson
, and
A.
Oppenheim
, “
Gasdynamic model of turbulent exothermic fields in explosions
,”
Adv. Combust. Sci.
173
,
251
261
(
1997
).
63.
F.
Ree
,
W.
Pitz
,
M.
Van Thiel
, and
P.
Souers
, “
Overabundance of carbon monoxide in calorimetry tests
,”
J. Phys. Chem.
100
,
5761
5765
(
1996
).

Supplementary Material

You do not currently have access to this content.