Supersonic gas jets in conical convergent–divergent nozzles are studied numerically using the OpenFOAM rhoCentralFoam solver. The spatiotemporal evolution of the jet flow field is analyzed. The influence of the operating conditions on the flow field is studied parametrically, including the nozzle pressure ratio (NPR), area ratio, and throat position. The behaviors and mechanisms of the double-diamond structure, throat wave, and exit wave are interpreted in detail. The results show that a conical convergent–divergent nozzle always generates shock waves. The throat shock reaches its maximum length during the initial stage, then becomes slightly shorter before becoming stationary, dominated by the exit velocity. Furthermore, it is shown that the jet flow changes from overexpansion to underexpansion with increasing NPR. With an increasing area ratio, the trend is the opposite. The throat position affects the jet divergence angle at the nozzle exit, consequently causing a variation in the core radius of the jet. It is further shown that the double-diamond structure does not always appear. The throat shock angle, exit wave angle, and shear layer width directly affect the shape of the double-diamond structure. The favorable pressure gradient of the nozzle ultimately dominates the changes in the length of the throat wave and exit wave.

1.
T.
Meyer
, “
Ueber zweidimensionale bewegungs vorgaenge in einem gas, das mit ueberschallgeschwindigkeit stroemt
,” Ph.D. dissertation (Forschungsheft des Vereins deutscher Ingenieure,
Goettingen
,
1908
).
2.
S. M. A.
Kumar
and
E.
Rathakrishnan
, “
Characteristics of a supersonic elliptic jet
,”
Aeronaut. J.
120
(
1225
),
495
519
(
2016
).
3.
S. M. A.
Kumar
and
E.
Rathakrishnan
, “
Nozzle aspect ratio effect on supersonic elliptic jet mixing
,”
J. Fluids Eng.
139
(
10
),
101103
(
2017
).
4.
P.
Behrouzi
,
J. J.
McGuirk
, and
C.
Avenell
, “
Effect of scarfing on rectangular nozzle supersonic jet plume flow characteristics
,”
AIAA J.
56
(
1
),
301
315
(
2018
).
5.
R.
Baidya
,
A.
Pesyridis
, and
M.
Cooper
, “
Ramjet nozzle analysis for transport aircraft configuration for sustained hypersonic flight
,”
Appl. Sci.
8
(
4
),
574
(
2018
).
6.
A. N.
Rao
,
A.
Kushari
, and
G. K.
Jaiswal
, “
Effect of nozzle geometry on flowfield for high subsonic jets
,”
J. Propul. Power
34
(
6
),
1596
1608
(
2018
).
7.
X.
Yang
,
X.
Long
, and
X.
Yao
, “
Numerical investigation on the mixing process in a steam ejector with different nozzle structures
,”
Int. J. Therm. Sci.
56
,
95
106
(
2012
).
8.
C.
Genin
,
R.
Stark
,
S.
Karl
, and
D.
Schneider
, “
Numerical investigation of dual bell nozzle flow field
,” AIAA Paper No. 2012-4164,
2012
.
9.
S.
Manigandan
and
K.
Vijayaraja
, “
Flow field and acoustic characteristics of elliptical throat CD nozzle
,”
Int. J. Ambient Energy
40
(
1
),
57
62
(
2019
).
10.
R.
Ramesh Kumar
and
Y.
Devarajan
, “
CFD simulation analysis of two-dimensional convergent-divergent nozzle
,”
Int. J. Ambient Energy
41
(
13
),
1505
1515
(
2020
).
11.
Q.
Xiao
,
H. M.
Tsai
, and
D.
Papamoschou
, “
Numerical investigation of supersonic nozzle flow separation
,”
AIAA J.
45
(
3
),
532
541
(
2007
).
12.
Q.
Xiao
,
H. M.
Tsai
,
D.
Papamoschou
, and
A.
Johnson
, “
Experimental and numerical study of jet mixing from a shock-containing nozzle
,”
J. Propul. Power
25
(
3
),
688
696
(
2009
).
13.
Y.
Li
,
C.
He
,
J.
Li
,
L.
Miao
,
R.
Gao
, and
J.
Liang
, “
Experimental investigation of flow separation in a planar convergent-divergent nozzle
,”
J. Phys.: Conf. Ser.
1300
(
1
),
012088
(
2019
).
14.
B. P.
Madhu
,
G.
Mahendramani
, and
K.
Bhaskar
, “
Numerical analysis on flow properties in convergent-divergent nozzle for different divergence angle
,”
Mater. Today
45
,
207
215
(
2021
).
15.
K.
Pansari
and
S. A. K.
Jilani
, “
Analysis of the performance and flow characteristics of convergent divergent (CD) nozzle
,”
Int. J. Adv. Eng. Technol.
6
(
3
),
1313
(
2013
); available at https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Analysis+of+the+Performance+and+Flow+Characteristics+of+Convergent+Divergent+%28CD%29+Nozzle&btnG=.
16.
R.
Kamali
,
S. M.
Mousavi
, and
A. R.
Binesh
, “
Three dimensional CFD investigation of shock train structure in a supersonic nozzle
,”
Acta Astronaut.
116
,
56
67
(
2015
).
17.
R. C.
Mehta
and
J. K.
Prasad
, “
Investigation of supersonic free jets emanating from convergent-divergent nozzles
,”
Int. J. Comput. Fluid Dyn.
10
(
1
),
61
71
(
1998
).
18.
A.
Aabid
,
Z. I.
Chaudhary
, and
S. A.
Khan
, “
Modelling and analysis of convergent divergent nozzle with sudden expansion duct using finite element method
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
63
(
1
),
34
51
(
2019
); available at https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Modelling+and+analysis+of+convergent+divergent+nozzle+with+sudden+expansion+duct+using+finite+element+method&btnG=.
19.
A.
Aabid
and
S. A.
Khan
, “
Investigation of high-speed flow control from CD nozzle using design of experiments and CFD methods
,”
Arabian J. Sci. Eng.
46
(
3
),
2201
2230
(
2021
).
20.
D.
Edgington-Mitchell
,
D. R.
Honnery
, and
J.
Soria
, “
The underexpanded jet Mach disk and its associated shear layer
,”
Phys. Fluids
26
(
9
),
096101
(
2014
).
21.
M.
Banholzer
,
W.
Vera-Tudela
,
C.
Traxinger
,
M.
Pfitzner
,
Y.
Wright
, and
K.
Boulouchos
, “
Numerical investigation of the flow characteristics of underexpanded methane jets
,”
Phys. Fluids
31
(
5
),
056105
(
2019
).
22.
A.
Zadvornaya
,
P.
Creemers
,
K.
Dockx
, and
R.
Ferrer
, “
Characterization of supersonic gas jets for high-resolution laser ionization spectroscopy of heavy elements
,”
Phys. Rev. X
8
(
4
),
041008
(
2018
).
23.
D.
Munday
,
E.
Gutmark
,
J.
Liu
, and
K.
Kailasanath
, “
Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles
,”
Phys. Fluids
23
(
11
),
116102
(
2011
).
24.
M.
Darwish
,
L.
Orazi
, and
D.
Angeli
, “
Simulation and analysis of the jet flow patterns from supersonic nozzles of laser cutting using OpenFOAM
,”
Int. J. Adv. Manuf. Technol.
102
(
9
),
3229
3242
(
2019
).
25.
P.
Arun Kumar
,
M.
Aileni
, and
E.
Rathakrishnan
, “
Impact of tab location relative to the nozzle exit on the shock structure of a supersonic jet
,”
Phys. Fluids
31
(
7
),
076104
(
2019
).
26.
Y.
Ozawa
,
T.
Nonomura
,
A.
Oyama
, and
K.
Asai
, “
Effect of the Reynolds number on the aeroacoustic fields of a transitional supersonic jet
,”
Phys. Fluids
32
(
4
),
046108
(
2020
).
27.
M.
Dharavath
and
D.
Chakraborty
, “
Numerical simulation of supersonic jet impingement on inclined plate
,”
Def. Sci. J.
63
(
4
),
355
362
(
2013
).
28.
I. E.
Evgenevna
,
I. T.
Evgenevna
, and
B. P.
Viktorovich
, “
Analysis of the application of turbulence models in the calculation of supersonic gas jet
,”
Am. J. Appl. Sci.
11
(
11
),
1914
1920
(
2014
).
29.
A.
Balabel
,
A. M.
Hegab
,
M.
Nasr
, and
S. M.
El-Behery
, “
Assessment of turbulence modeling for gas flow in two-dimensional convergent-divergent rocket nozzle
,”
Appl. Math. Modell.
35
(
7
),
3408
3422
(
2011
).
30.
B.
Zang
,
U. S.
Vevek
,
H. D.
Lim
,
X.
Wei
, and
T. H.
New
, “
An assessment of OpenFOAM solver on RANS simulations of round supersonic free jets
,”
J. Comput. Sci.
28
,
18
31
(
2018
).
31.
F. R.
Menter
, “
Zonal two equation k-w turbulence models for aerodynamic flows
,” in
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
1993
.
32.
D.
Munday
,
E.
Gutmark
,
J.
Liu
, and
K.
Kailasanath
, “
Flow and acoustic radiation from realistic tactical jet CD nozzles
,” AIAA Paper No. 2008-2838,
2008
.
33.
D. K.
Lohia
,
B.
Kumar
,
S.
Srivastava
, and
H. K.
Paliwal
, “
Numerical simulation of supersonic overexpanded jet from 2-D convergent-divergent nozzle
,”
Int. J. Integr. Eng.
10
(
8
),
195
201
(
2018
).
34.
B.
Kumar
and
S.
Srivastava
, “
Modelling 2-D supersonic jet from a convergent-divergent nozzle using k-ε realizable turbulence model
,”
J. Phys.: Conf. Ser.
1240
(
1
),
012019
(
2019
).
35.
T. D.
Norum
and
J. M.
Seiner
, “
Measurements of mean static pressure and far field acoustics of shock containing supersonic jets
,”
Report No. NASA TM 84521
(
NASA
,
1982
).
You do not currently have access to this content.