The onset of transition to cellularity and self-similar propagation of centrally ignited, expanding spherical flames in a reactive environment of H2/O2/N2 and H2/O2/He mixtures at initial pressures up to 15 bar were experimentally investigated using a newly developed, constant-pressure, dual-chamber vessel and were theoretically interpreted based on linear stability theory. The experiments were well-controlled to identify the separate and coupled effects of Darrieus–Landau instability and diffusional–thermal instability. Results show that the critical radius, rcr, for the onset of cellular instability varies non-monotonously with initial pressure for fuel-lean and stoichiometric H2/O2/N2 flames. This non-monotonous pressure dependence of rcr is well captured by linear stability theory for stoichiometric flames. The experimental critical Peclet number, Pecr = rcr/δf, increases non-linearly with the Markstein number, Ma, which measures the intensity of diffusional–thermal instability. However, a linear dependence of Pecr on Ma is predicted by linear stability theory. Specifically, the theory shows well quantitative agreement with the experimental results for mixtures with near-unity Leeff; however, it under-predicts the Pecr for mixtures with off-unity Leeff. In addition, there exists three distinct propagation stages for flames subjected to cellular instability, namely, smooth expansion, transition propagation, and self-similar propagation. The acceleration exponent, α, in the self-similar propagation stage was extracted based on the power-law of drf/dt = αA1/αrf(1 − 1/α), where rf is the instantaneous mean flame radius, and A is a constant. The values of α are located between 1.22 and 1.40, which are smaller than the suggested value (1.5) for self-turbulization.

1.
V. V.
Bychkov
and
M. A.
Liberman
, “
Stability of a flame in a closed chamber
,”
Phys. Rev. Lett.
78
,
1371
(
1997
).
2.
L.
Kagan
and
G.
Sivashinsky
, “
Transition to detonation of an expanding spherical flame
,”
Combust. Flame
175
,
307
(
2017
).
3.
Z.
Liu
,
V. R.
Unni
,
S.
Chaudhuri
,
R.
Sui
,
C. K.
Law
, and
A.
Saha
, “
Self-turbulization in cellularly unstable laminar flames
,”
J. Fluid Mech.
917
,
A53
(
2021
).
4.
W.
Han
,
C.
Wang
, and
C. K.
Law
, “
Role of transversal concentration gradient in detonation propagation
,”
J. Fluid Mech.
865
,
602
(
2019
).
5.
Z.
Huang
and
H.
Zhang
, “
Ignition and deflagration-to-detonation transition modes in ethylene/air mixtures behind a reflected shock
,”
Phys. Fluids
34
,
086105
(
2022
).
6.
H.
Zheng
,
W.
Zhu
,
X.
Jia
, and
N.
Zhao
, “
Eulerian–Lagrangian modeling of deflagration to detonation transition in n-decane/oxygen/nitrogen mixtures
,”
Phys. Fluids
34
,
126110
(
2022
).
7.
J.
Chambers
,
H. M.
Chin
,
A. Y.
Poludnenko
,
V. N.
Gamezo
, and
K. A.
Ahmed
, “
Spontaneous runaway of fast turbulent flames for turbulence-induced deflagration-to-detonation transition
,”
Phys. Fluids
34
,
015114
(
2022
).
8.
X.
Zhao
,
J.
Wang
,
L.
Gao
,
J.
Pan
, and
Y.
Zhu
, “
Effect of hydrogen concentration distribution on flame acceleration and deflagration-to-detonation transition in staggered obstacle-laden channel
,”
Phys. Fluids
35
,
016124
(
2023
).
9.
V. V.
Bychkov
and
M. A.
Liberman
, “
Dynamics and stability of premixed flames
,”
Phys. Rep.
325
,
115
(
2000
).
10.
F.
Oppong
,
Z.
Luo
,
X.
Li
,
Y.
Song
, and
C.
Xu
, “
Intrinsic instability of different fuels spherically expanding flames: A review
,”
Fuel Process. Technol.
234
,
107325
(
2022
).
11.
J. K.
Bechtold
and
M.
Matalon
, “
Hydrodynamic and diffusion effects on the stability of spherically expanding flames
,”
Combust. Flame
67
,
77
(
1987
).
12.
R.
Addabbo
,
J. K.
Bechtold
, and
M.
Matalon
, “
Wrinkling of spherically expanding flames
,”
Proc. Combust. Inst.
29
,
1527
(
2002
).
13.
M.
Matalon
, “
Intrinsic flame instabilities in premixed and nonpremixed combustion
,”
Annu. Rev. Fluid Mech.
39
,
163
(
2007
).
14.
G. I.
Siv Ashinsky
,
Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames—I. Derivation of Basic Equations
(
Academic Press
,
San Diego
,
1988
).
15.
G. I.
Sivashinsky
, “
Instabilities, pattern formation, and turbulence in flames
,”
Annu. Rev. Fluid Mech.
15
,
179
(
1983
).
16.
L.
Filyand
,
G. I.
Sivashinsky
, and
M. L.
Frankel
, “
On self-acceleration of outward propagating wrinkled flames
,”
Physica D
72
,
110
(
1994
).
17.
S. I.
Blinnikov
and
P. V.
Sasorov
, “
Landau-Darrieus instability and the fractal dimension of flame fronts
,”
Phys. Rev. E
53
(
5
),
4827
(
1996
).
18.
B.
Galanti
,
O.
Kupervasser
,
Z.
Olami
, and
I.
Procaccia
, “
Dynamics and wrinkling of radially propagating fronts inferred from scaling laws in channel geometries
,”
Phys. Rev. Lett.
80
,
2477
(
1998
).
19.
K.-L.
Pan
and
R.
Fursenko
, “
Characteristics of cylindrical flame acceleration in outward expansion
,”
Phys. Fluids
20
,
094107
(
2008
).
20.
K.
Mukaiyama
,
S.
Shibayama
, and
K.
Kuwana
, “
Fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames
,”
Combust. Flame
160
,
2471
(
2013
).
21.
M. A.
Liberman
,
M. F.
Ivanov
,
O. E.
Peil
,
D. M.
Valiev
, and
L.-E.
Eriksson
, “
Self-acceleration and fractal structure of outward freely propagating flames
,”
Phys. Fluids
16
,
2476
(
2004
).
22.
J.
Yuan
,
Y.
Ju
, and
C. K.
Law
, “
Coupled hydrodynamic and diffusional-thermal instabilities in flame propagation at subunity Lewis numbers
,”
Phys. Fluids
17
,
074106
(
2005
).
23.
Y. X.
Xin
,
C. S.
Yoo
,
J. H.
Chen
, and
C. K.
Law
, “
A DNS study of self-accelerating cylindrical hydrogen–air flames with detailed chemistry
,”
Proc. Combust. Inst.
35
,
753
(
2015
).
24.
R.
Yu
,
X.-S.
Bai
, and
V.
Bychkov
, “
Fractal flame structure due to the hydrodynamic Darrieus-Landau instability
,”
Phys. Rev. E
92
,
063028
(
2015
).
25.
L.
Berger
,
K.
Kleinheinz
,
A.
Attili
, and
H.
Pitsch
, “
Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames
,”
Proc. Combust. Inst.
37
,
1879
(
2019
).
26.
D.
Bradley
and
C. M.
Harper
, “
The development of instabilities in laminar explosion flames
,”
Combust. Flame
99
,
562
(
1994
).
27.
D.
Bradley
,
C. G. W.
Sheppart
,
R.
Woolley
,
D. A.
Greenhalgh
, and
R. D.
Lockett
, “
The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions
,”
Combust. Flame
122
,
195
(
2000
).
28.
D.
Bradley
,
T. M.
Cresswell
, and
J. S.
Puttock
, “
Flame acceleration due to flame-induced instabilities in large-scale explosions
,”
Combust. Flame
124
,
551
(
2001
).
29.
D.
Bradley
,
M.
Lawes
,
K.
Liu
,
S.
Verhelst
, and
R.
Woolley
, “
Laminar burning velocities of lean hydrogen–air mixtures at pressures up to 1.0 MPa
,”
Combust. Flame
149
,
162
(
2007
).
30.
D.
Bradley
,
M.
Lawes
,
R.
Mumby
, and
P.
Ahmed
, “
The stability of laminar explosion flames
,”
Proc. Combust. Inst.
37
,
1807
(
2019
).
31.
O. C.
Kwon
,
G.
Rozenchan
, and
C. K.
Law
, “
Cellular instabilities and self-acceleration of outwardly propagating spherical flames
,”
Proc. Combust. Inst.
29
,
1775
(
2002
).
32.
C. K.
Law
,
G.
Jomaas
, and
J. K.
Bechtold
, “
Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment
,”
Proc. Combust. Inst.
30
,
159
(
2005
).
33.
G.
Jomaas
,
C. K.
Law
, and
J. K.
Bechtold
, “
On transition to cellularity in expanding spherical flames
,”
J. Fluid Mech.
583
,
1–26
(
2007
).
34.
F.
Wu
,
G.
Jomaas
, and
C. K.
Law
, “
An experimental investigation on self-acceleration of cellular spherical flames
,”
Proc. Combust. Inst.
34
,
937
(
2013
).
35.
S.
Yang
,
A.
Saha
,
F.
Wu
, and
C. K.
Law
, “
Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities
,”
Combust. Flame
171
,
112
(
2016
).
36.
J.
Huo
,
A.
Saha
,
Z.
Ren
, and
C. K.
Law
, “
Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames
,”
Combust. Flame
194
,
419
(
2018
).
37.
Z.
Liu
,
V. R.
Unni
,
S.
Chaudhuri
,
C. K.
Law
, and
A.
Saha
, “
Local statistics of laminar expanding flames subjected to Darrieus-Landau instability
,”
Proc. Combust. Inst.
38
,
1993
(
2021
).
38.
S.
Yang
,
A.
Saha
,
Z.
Liu
, and
C. K.
Law
, “
Role of Darrieus–Landau instability in propagation of expanding turbulent flames
,”
J. Fluid Mech.
850
,
784
(
2018
).
39.
J.
Wang
,
Y.
Xie
,
X.
Cai
,
Y.
Nie
,
C.
Peng
, and
Z.
Huang
, “
Effect of H2O addition on the flame front evolution of syngas spherical propagation flames
,”
Combust. Sci. Technol.
188
,
1054
(
2016
).
40.
Y.
Xie
,
J.
Wang
,
X.
Cai
, and
Z.-H.
Huang
, “
Self-acceleration of cellular flames and laminar flame speed of syngas/air mixtures at elevated pressures
,”
Int. J. Hydrogen Energy
41
,
18250
(
2016
).
41.
X.
Cai
,
J.
Wang
,
H.
Zhao
,
M.
Zhang
, and
Z.-H.
Huang
, “
Flame morphology and self-acceleration of syngas spherically expanding flames
,”
Int. J. Hydrogen Energy
43
,
17531
(
2018
).
42.
H.
Zhao
,
J.
Wang
,
Z.
Bian
,
X.
Cai
,
X.
Li
, and
Z.
Huang
, “
Onset of cellular instability and self-acceleration propagation of syngas spherically expanding flames at elevated pressures
,”
Int. J. Hydrogen Energy
44
,
27995
(
2019
).
43.
X.
Cai
,
J.
Wang
,
Z.
Bian
,
H.
Zhao
,
H.
Dai
, and
Z.
Huang
, “
On transition to self-similar acceleration of spherically expanding flames with cellular instabilities
,”
Combust. Flame
215
,
364
(
2020
).
44.
J.
Beeckmann
,
R.
Hesse
,
S.
Kruse
,
A.
Berens
,
N.
Peters
,
H.
Pitsch
, and
M.
Matalon
, “
Propagation speed and stability of spherically expanding hydrogen/air flames: Experimental study and asymptotics
,”
Proc. Combust. Inst.
36
,
1531
(
2017
).
45.
Y. A.
Gostintsev
,
A. G.
Istratov
, and
Y. V.
Shulenin
, “
Self-similar propagation of a free turbulent flame in mixed gas mixtures
,”
Combust., Explos. Shock Waves
24
,
563
(
1989
).
46.
Y. A.
Gostintsev
,
V. E.
Fortov
, and
Y. V.
Shatskikh
, “
Self-similar propagation law and fractal structure of the surface of a free expanding turbulent spherical flame
,”
Dokl. Phys. Chem.
397
,
141
(
2004
).
47.
M. Z.
Haq
, “
Correlations for the onset of instabilities of spherical laminar premixed flames
,”
J. Heat Transfer
127
,
1410
(
2005
).
48.
C. R.
Bauwens
,
J. M.
Bergthorson
, and
S. B.
Dorofeev
, “
Experimental study of spherical-flame acceleration mechanisms in large-scale propane–air flames
,”
Proc. Combust. Inst.
35
,
2059
(
2015
).
49.
W. K.
Kim
,
T.
Mogi
,
K.
Kuwana
, and
R.
Dobashi
, “
Self-similar propagation of expanding spherical flames in large scale gas explosions
,”
Proc. Combust. Inst.
35
,
2051
(
2015
).
50.
X.
Lu
,
E.
Hu
,
Z.
Xu
,
R.
Ge
,
Z.
Huang
, and
K.
Zeng
, “
Non-monotonic behavior of flame instability of 1,3-butadiene/O2/He mixture up to 1.5 MPa
,”
Fuel
255
,
115749
(
2019
).
51.
X.
Lu
,
E.
Hu
,
S.
Huang
,
Z.
Xu
,
X.
Li
, and
Z.
Huang
, “
Experimental and kinetic study on laminar burning velocities of 1,3-butadiene at pressures up to 1.5 MPa
,”
Fuel
246
,
222
(
2019
).
52.
M. P.
Burke
,
Z.
Chen
,
Y.
Ju
, and
F. L.
Dryer
, “
Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames
,”
Combust. Flame
156
,
771
(
2009
).
53.
Z.
Chen
, “
On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames
,”
Combust. Flame
158
,
291
(
2011
).
54.
X.
Cai
,
J.
Wang
,
H.
Zhao
,
Y.
Xie
, and
Z.
Huang
, “
Effects of initiation radius selection and Lewis number on extraction of laminar burning velocities from spherically expanding flames
,”
Combust. Sci. Technol.
190
,
286
(
2017
).
55.
M. P.
Burke
,
M.
Chaos
,
F. L.
Dryer
, and
Y.
Ju
, “
Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures
,”
Combust. Flame
157
,
618
(
2010
).
56.
J. K.
Bechtold
and
M.
Matalon
, “
The dependence of the Markstein length on stoichiometry
,”
Combust. Flame
127
,
1906
(
2001
).
57.
C. K.
Law
and
C. J.
Sung
, “
Structure, aerodynamics, and geometry of premixed flamelets
,”
Prog. Energy Combust. Sci.
26
,
459
(
2000
).
58.
A. G.
Istratov
and
V. B.
Librovich
, “
On the stability of gasdynamic discontinuities associated with chemical reactions. The case of a spherical flame
,”
Astronaut. Acta
14
,
453
(
1969
).
59.
A. G.
Class
,
B. J.
Matkowsky
, and
A. Y.
Klimenko
, “
A unified model of flames as gasdynamic discontinuities
,”
J. Fluid Mech.
491
,
11
(
2003
).
60.
G. K.
Giannakopoulos
,
A.
Gatzoulis
,
C. E.
Frouzakis
,
M.
Matalon
, and
A. G.
Tomboulides
, “
Consistent definitions of ‘flame displacement speed’ and ‘Markstein length’ for premixed flame propagation
,”
Combust. Flame
162
,
1249
(
2015
).
61.
S.
Kwon
,
L. K.
Tseng
, and
G. M.
Faeth
, “
Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures
,”
Combust. Flame
90
,
230
(
1992
).
62.
P.
Clavin
and
G.
Joulin
,
Flamelet Library for Turbulent Wrinkled Flames
(
Springer US
,
New York, NY
,
1989
).
63.
F.
Oppong
,
C.
Xu
,
L.
Zhongyang
,
X.
Li
,
W.
Zhou
, and
C.
Wang
, “
Cellularization of 2-methylfuran expanding spherical flame
,”
Combust. Flame
206
,
379
(
2019
).
64.
J.
Huo
,
A.
Saha
,
T.
Shu
,
Z.
Ren
, and
C. K.
Law
, “
Self-acceleration and global pulsation in expanding laminar H2-O2-N2 flames
,”
Phys. Rev. Fluids
4
,
043201
(
2019
).
You do not currently have access to this content.