The stationary Görtler instability in hypersonic flow over a concave wall is systematically investigated across a range of geometric and flow parameters using resolvent analysis, which seeks for the forcing and response pair that maximizes the energy amplification. The optimal forcing takes the form of streamwise vortices, while the optimal response is streamwise streaks. The growth of the optimal disturbance is contributed by both the lift-up and centrifugal mechanisms. The latter becomes dominant as the boundary layer develops, and its growth rate agrees well with that predicted by local stability analysis. In terms of changes in geometric parameters, an increase in curvature destabilizes the Görtler instability, as expected, while the effect of the angle subtended by the concave wall (the turning angle) is shown to be negligible. With respect to changes in flow parameters, the Görtler instability is stabilized at low Reynolds numbers, destabilized under the cold-wall effect, and insensitive to the change in Mach number. The most amplified spanwise wavelength scales with the boundary-layer thickness, which remains mostly unchanged when the freestream Mach number is varied from 3 to 10. A new dimensionless wavelength parameter is proposed to predict the wavelength of the most dangerous Görtler vortices in the compressible flow regime. The resolvent analysis results are confirmed by a three-dimensional numerical simulation, where the hypersonic flow is perturbed by a spatial white noise.

1.
P.
Hall
, “
Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage
,”
Mathematika
37
,
151
(
1990
).
2.
J. M.
Floryan
, “
On the görtler instability of boundary layers
,”
Prog. Aerosp. Sci.
28
,
235
(
1991
).
3.
W. S.
Saric
, “
Görtler vortices
,”
Annu. Rev. Fluid Mech.
26
,
379
(
1994
).
4.
F.
Li
,
M.
Choudhari
,
C.-L.
Chang
,
P.
Greene
, and
M.
Wu
,
Development and Breakdown of Gortler Vortices in High Speed Boundary Layers
(
American Institute of Aeronautics and Astronautics
,
2010
).
5.
L.
De Luca
,
G.
Cardone
,
D.
Aymer de la Chevalerie
, and
A.
Fonteneau
, “
Goertler instability of a hypersonic boundary layer
,”
Exp. Fluids
16
,
10
(
1993
).
6.
L.
Ciolkosz
and
E.
Spina
,
An Experimental Study of Görtler Vortices in Compressible Flow
(
American Institute of Aeronautics and Astronautics
,
2006
).
7.
G.
Huang
,
W.
Si
, and
C.
Lee
, “
Early stage evolution of naturally developing Görtler streaks
,”
Phys. Fluids
33
,
061706
(
2021
).
8.
G.
Huang
,
W.
Si
, and
C.
Lee
, “
Inner structures of Görtler streaks
,”
Phys. Fluids
33
,
034116
(
2021
).
9.
G.
Huang
, “
Interactions between Görtler vortices and the second mode in hypersonic boundary layer
,”
Phys. Fluids
33
,
111701
(
2021
).
10.
X.
Li
,
Y.
Zhang
,
H.
Yu
,
Z.-K.
Lin
,
H.-J.
Tan
, and
S.
Sun
, “
Görtler vortices behavior and prediction in dual-incident shock-wave/turbulent-boundary-layer interactions
,”
Phys. Fluids
34
,
106103
(
2022
).
11.
C.
Whang
and
X.
Zhong
,
Secondary Goertler Instability in Hypersonic Boundary Layers
(
American Institute of Aeronautics and Astronautics
,
2001
).
12.
J.
Ren
and
S.
Fu
, “
Secondary instabilities of Görtler vortices in high-speed boundary layer flows
,”
J. Fluid Mech.
781
,
388
(
2015
).
13.
X.
Chen
,
G. L.
Huang
, and
C. B.
Lee
, “
Hypersonic boundary layer transition on a concave wall: Stationary Görtler vortices
,”
J. Fluid Mech.
865
,
1
40
(
2019
).
14.
X.
Chen
,
J.
Chen
,
X.
Yuan
,
G.
Tu
, and
Y.
Zhang
, “
From primary instabilities to secondary instabilities in Görtler vortex flows
,”
Adv. Aerodyn.
1
,
19
(
2019
).
15.
R.
Song
,
L.
Zhao
, and
Z.
Huang
, “
Secondary instability of stationary Görtler vortices originating from first/second Mack mode
,”
Phys. Fluids
32
,
034109
(
2020
).
16.
G.
Huang
,
X.
Chen
,
J.
Chen
,
X.
Yuan
, and
G.
Tu
, “
The stabilizing effect of grooves on Görtler instability-induced boundary layer transition in hypersonic flow
,”
Phys. Fluids
35
,
041701
(
2023
).
17.
X.
Chen
,
J.
Chen
, and
X.
Yuan
, “
Hypersonic boundary layer transition on a concave wall induced by low-frequency blowing and suction
,”
Phys. Fluids
34
,
114105
(
2022
).
18.
F.
Li
,
M.
Choudhari
, and
P.
Paredes
, “
Secondary instability of Görtler vortices in hypersonic boundary layer over an axisymmetric configuration
,”
Theor. Comput. Fluid Dyn.
36
,
205
(
2022
).
19.
P.
Hall
, “
Taylor—Gortler vortices in fully developed or boundary-layer flows: Linear theory
,”
J. Fluid Mech.
124
,
475
(
1982
).
20.
P.
Hall
, “
The linear development of Görtler vortices in growing boundary layers
,”
J. Fluid Mech.
130
,
41
(
1983
).
21.
A. P.
Bassom
and
P.
Hall
, “
The receptivity problem for O(1) wavelength Görtler vortices
,”
Proc. R. Soc. A
446
,
499
(
1994
).
22.
X.
Wu
,
D.
Zhao
, and
J.
Luo
, “
Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances
,”
J. Fluid Mech.
682
,
66
(
2011
).
23.
S.
Viaro
and
P.
Ricco
, “
Compressible unsteady Görtler vortices subject to free-stream vortical disturbances
,”
J. Fluid Mech.
867
,
250
(
2019
).
24.
S.
Viaro
and
P.
Ricco
, “
Neutral stability curves of compressible Görtler flow generated by low-frequency free-stream vortical disturbances
,”
J. Fluid Mech.
876
,
1146
(
2019
).
25.
A.
Bottaro
and
P.
Luchini
, “
Görtler vortices: Are they amenable to local eigenvalue analysis?
,”
Eur. J. Mech.-B/Fluids
18
,
47
(
1999
).
26.
J.
Ren
and
S.
Fu
, “
Study of the discrete spectrum in a Mach 4.5 Görtler flow
,”
Flow, Turbul. Combust.
94
,
339
(
2015
).
27.
J. M.
Floryan
, “
The second mode of the Goertler instability of boundary layers
,”
AIAA J.
23
,
1828
(
1985
).
28.
R. E.
Spall
and
M. R.
Malik
, “
Goertler vortices in supersonic and hypersonic boundary layers
,”
Phys. Fluids A
1
,
1822
(
1989
).
29.
P. J.
Schmid
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
,
129
(
2007
).
30.
P.
Paredes
,
M. M.
Choudhari
, and
F.
Li
, “
Instability wave–streak interactions in a supersonic boundary layer
,”
J. Fluid Mech.
831
,
524
(
2017
).
31.
C.
Cossu
,
J. M.
Chomaz
,
P.
Huerre
, and
M.
Costa
, “
Maximum spatial growth of Görtler vortices
,”
Flow, Turbul. Combust.
65
,
369
(
2000
).
32.
F.
Li
,
M. M.
Choudhari
,
P.
Paredes
,
S. P.
Schneider
, and
P.
Portoni
,
Görtler Instability and Its Control via Surface Suction over an Axisymmetric Cone at Mach 6
(
American Institute of Aeronautics and Astronautics
,
2018
).
33.
A.
Dwivedi
,
G. S.
Sidharth
,
J. W.
Nichols
,
G. V.
Candler
, and
M. R.
Jovanović
, “
Reattachment streaks in hypersonic compression ramp flow: An input–output analysis
,”
J. Fluid Mech.
880
,
113
(
2019
).
34.
A.
Dwivedi
,
S.
Gs
,
C.
Hollender
, and
G. V.
Candler
,
Input-Output Analysis for Görtler-Type Instability in Axisymmetric Hypersonic Boundary-Layers
(
American Institute of Aeronautics and Astronautics
,
2020
).
35.
A.
Dwivedi
,
G. S.
Sidharth
, and
M. R.
Jovanović
, “
Oblique transition in hypersonic double-wedge flow
,”
J. Fluid Mech.
948
,
A37
(
2022
).
36.
B.
Bugeat
,
J. C.
Chassaing
,
J. C.
Robinet
, and
P.
Sagaut
, “
3D global optimal forcing and response of the supersonic boundary layer
,”
J. Comput. Phys.
398
,
108888
(
2019
).
37.
B.
Bugeat
,
J. C.
Robinet
,
J. C.
Chassaing
, and
P.
Sagaut
, “
Low-frequency resolvent analysis of the laminar oblique shock wave/boundary layer interaction
,”
J. Fluid Mech.
942
,
A43
(
2022
).
38.
D.
Sipp
,
O.
Marquet
,
P.
Meliga
, and
A.
Barbagallo
, “
Dynamics and control of global instabilities in open-flows: A linearized approach
,”
Appl. Mech. Rev.
63
,
030801
(
2010
).
39.
H.
Bippes
,
Experimental study of the laminar-turbulent transition of a concave wall in a parallel flow
,” NTRS-NASA Tech. Report No. NASA-TM-75243 (
1978
), see https://ntrs.nasa.gov/citations/19780013469.
40.
J. M.
Floryan
and
W. S.
Saric
, “
Stability of Gortler Vortices in Boundary Layers
,”
AIAA J.
20
,
316
(
1982
).
41.
J.
Hao
and
C.-Y.
Wen
, “
Stabilization of a two-dimensional hypersonic boundary layer using a shallow cavity
,”
AIAA J.
(published online).
42.
J.
Hao
,
J.
Fan
,
S.
Cao
, and
C.-Y.
Wen
, “
Three-dimensionality of hypersonic laminar flow over a double cone
,”
J. Fluid Mech.
935
,
A8
(
2022
).
43.
R. W.
MacCormack
,
Numerical Computation of Compressible and Viscous Flow
(
American Institute of Aeronautics and Astronautics, Inc
.,
2014
).
44.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
32
,
101
(
1979
).
45.
M. J.
Wright
,
G. V.
Candler
, and
D.
Bose
, “
Data-parallel line relaxation method for the Navier-Stokes equations
,”
AIAA J.
36
,
1603
(
1998
).
46.
J.
Ren
and
S.
Fu
, “
Competition of the multiple Görtler modes in hypersonic boundary layer flows
,”
Sci. China
57
,
1178
(
2014
).
47.
G.
Guennebaud
,
B.
Jacob
et al, “
Eigen v3
” (2010), see https://eigen.tuxfamily.org/index.php?title=Main_Page.
48.
J.
Hao
,
S.
Cao
,
C.-Y.
Wen
, and
H.
Olivier
, “
Occurrence of global instability in hypersonic compression corner flow
,”
J. Fluid Mech.
919
,
A4
(
2021
).
49.
B.-T.
Chu
, “
On the energy transfer to small disturbances in fluid flow (Part I)
,”
Acta Mech.
1
,
215
(
1965
).
50.
A.
Hanifi
,
P. J.
Schmid
, and
D. S.
Henningson
, “
Transient growth in compressible boundary layer flow
,”
Phys. Fluids
8
,
826
(
1996
).
51.
D.
Sipp
and
O.
Marquet
, “
Characterization of noise amplifiers with global singular modes: The case of the leading-edge flat-plate boundary layer
,”
Theor. Comput. Fluid Dyn.
27
,
617
(
2013
).
52.
D.
Sorensen
,
R.
Lehoucq
,
C.
Yang
, and
K. J.
Maschhoff
,
ARPACK Software
(
1996–2008
), see https://epubs.siam.org/doi/book/10.1137/1.9780898719628.
53.
X. S.
Li
,
J. W.
Demmel
,
J. R.
Gilbert
, and
L.
Grigori
, “
SuperLU users' guide
,” Tech report LBNL-44289 (1999), see https://scholar.google.com/citations?view_op=view_citation&hl=zh-TW&user=Bjpb27sAAAAJ&citation_for_view=Bjpb27sAAAAJ:ULOm3_A8WrAC.
54.
J.
van Ingen
,
The eN Method for Transition Prediction. Historical Review of Work at TU Delft
(
American Institute of Aeronautics and Astronautics
,
2008
).
55.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
(
1980
).
56.
S.
Winoto
,
T.
Tandiono
,
D.
Shah
, and
H.
Mitsudharmadi
, “
Concave surface boundary layer flows in the presence of streamwise vortices
,”
Int. J. Fluid Mach. Syst.
4
,
33
(
2011
).
57.
Q.-C.
Wang
,
Z.-G.
Wang
, and
Y.-X.
Zhao
, “
Visualization of Görtler vortices in supersonic concave boundary layer
,”
J. Visualization
21
,
57
(
2018
).
58.
S.
Unnikrishnan
and
D. V.
Gaitonde
, “
Interactions between vortical, acoustic and thermal components during hypersonic transition
,”
J. Fluid Mech.
868
,
611
(
2019
).
59.
C.
Hader
and
H. F.
Fasel
, “
Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances
,”
J. Fluid Mech.
847
,
R3
(
2018
).
60.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
(
1967
).
You do not currently have access to this content.