This paper investigates the process of dissolution of a solute in a solvent placed in an horizontal concentric cylinder. The theoretical investigation solves a Stefan problem with phase transition due to natural convective flow. To realize the objective, the governing equation for the concentration distribution, stream function–vorticity form of the Navier–Stokes equation for the flow field, and a Stefan condition for calculating the timescale evolution of the front are coupled together with different parameters. These non-linear equations are solved using a stable and second-order accurate boundary-fitted alternating direction implicit scheme with first-order upwind difference approximation for convective terms. The numerical scheme is validated initially by applying it to solve a natural convection problem with no phase transition, for which benchmark solutions are available. The validated scheme is then applied to the chosen problem followed by a refinement study to obtain a reliable solution. The obtained results are used to analyze the effect of physical parameters such as the Stefan number (Ste), geometric aspect ratio of solute to fluid, the Rayleigh number (Ra) and the Schmidt (Sc) number on dissolution rates as well as the flow patterns. It is observed that the solute dissolution, without the temperature influence, mainly depends on the annulus gap width (L) and the convection rate. Additionally, it is also observed that, for the Rayleigh numbers greater than 105, the unit circular-shaped solute initially dissolves uniformly from the outer surface, but as the time progresses, due to the influence of laminar boundary layer flow around the solute, it changes into an egg-shape.

1.
V.
Voller
,
J.
Swenson
, and
C.
Paola
, “
An analytical solution for a Stefan problem with variable latent heat
,”
Int. J. Heat Mass Transfer
47
,
5387
5390
(
2004
).
2.
Y.
Zhou
and
L.
Jiang Xia
, “
Exact solution for Stefan problem with general power-type latent heat using Kummer function
,”
Int. J. Heat Mass Transfer
84
,
114
118
(
2015
).
3.
A.
Friedman
,
Partial Differential Equations of Parabolic Type
, reprint 1983 ed. (
Robert Krieger Publishing Company
,
1964
).
4.
D. W.
Quinn
and
M. E.
Oxley
, “
The boundary element method applied to moving boundary problems
,”
Math. Comput. Modell.
14
,
145
150
(
1990
).
5.
A.
Kar
and
J.
Mazumder
, “
Analytic solution of the Stefan problem in finite mediums
,”
Q. Appl. Math.
52
,
49
58
(
1994
).
6.
S.
Nandi
and
Y.
Sanyasiraju
, “
An ADI based body-fitted method for Stefan problem in irregular geometries
,”
Int. J. Therm. Sci.
157
,
106473
(
2020
).
7.
S.
Nandi
and
Y.
Sanyasiraju
, “
A grid based ADI method for the problem of two phase solidification
,”
Int. J. Heat Mass Transfer
178
,
121569
(
2021
).
8.
S.
Nandi
and
Y.
Sanyasiraju
, “
A second order accurate fixed-grid method for multi-dimensional Stefan problem with moving phase change materials
,”
Appl. Math. Comput.
416
,
126719
(
2022
).
9.
S.
Mitchell
and
M.
Vynnycky
, “
Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems
,”
Appl. Math. Comput.
215
,
1609
1621
(
2009
).
10.
L. N.
Tao
, “
The Stefan problem with arbitrary initial and boundary conditions
,”
Q. Appl. Math.
36
,
223
233
(
1978
).
11.
S.
Chen
,
B.
Merriman
,
S.
Osher
, and
P.
Smereka
, “
A simple level set method for solving Stefan problems
,”
J. Comput. Phys.
135
,
8
29
(
1997
).
12.
G.
Beckett
,
J.
Mackenzie
, and
M.
Robertson
, “
A moving mesh finite element method for the solution of two-dimensional Stefan problems
,”
J. Comput. Phys.
168
,
500
518
(
2001
).
13.
M. K.
Bernauer
and
R.
Herzog
, “
Optimal control of the classical two-phase Stefan problem in level set formulation
,”
SIAM J. Sci. Comput.
33
,
342
363
(
2011
).
14.
D.
Juric
and
G.
Tryggvason
, “
A front-tracking method for dendritic solidification
,”
J. Comput. Phys.
123
,
127
148
(
1996
).
15.
O. A.
Oleinik
, “
A method of solution of the general Stefan problem
,” in
Doklady Akademii Nauk
(
Russian Academy of Sciences
,
1960
), Vol.
135
, pp.
1054
1057
.
16.
S.
Kamenomostskaya
, “
Stefan's problem
,” Technical Report No. AD0725877 (
Cold Regions Research and Engineering Lab
,
Hanover, NH
,
1971
).
17.
L. A.
Caffarelli
, “
The regularity of free boundaries in higher dimensions
,”
Acta Math.
139
,
155
184
(
1977
).
18.
M.
Turkyilmazoglu
, “
Stefan problems for moving phase change materials and multiple solutions
,”
Int. J. Therm. Sci.
126
,
67
73
(
2018
).
19.
A.
Kumar
and
Rajeev
, “
A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition
,”
Appl. Math. Comput.
386
,
125490
(
2020
).
20.
A. K.
Singh
,
A.
Kumar
, and
Rajeev
, “
A Stefan problem with variable thermal coefficients and moving phase change material
,”
J. King Saud Univ. -Sci.
31
,
1064
1069
(
2019
).
21.
A. K.
Singh
,
A.
Kumar
, and
Rajeev
, “
Exact and approximate solutions of a phase change problem with moving phase change material and variable thermal coefficients
,”
J. King Saud Univ. -Sci.
31
,
1318
1325
(
2019
).
22.
D.
Tritton
,
Physical Fluid Dynamics
(
Oxford Science Publishing
,
Clarendon Press
,
1988
).
23.
D. B.
Ingham
, “
Heat transfer by natural convection between spheres and cylinders
,”
Numer. Heat Transfer
4
,
53
67
(
1981
).
24.
N. R.
Patel
and
D. G.
Briggs
, “
A MAC scheme in boundary-fitted curvilinear coordinates
,”
Numer. Heat Transfer
6
,
383
394
(
1983
).
25.
M. R.
Abbott
, “
A numerical method for solving the equations of natural convection in a narrow concentric cylindrical annulus with a horizontal axis
,”
Q. J. Mech. Appl. Math.
17
,
471
481
(
1964
).
26.
L.
Crawford
and
R.
Lemlich
, “
Natural convection in horizontal concentric cylindrical annuli
,”
Ind. Eng. Chem. Fundam.
1
,
260
264
(
1962
).
27.
E.
Bishop
,
C.
Carley
, and
R.
Powe
, “
Natural convective oscillatory flow in cylindrical annuli
,”
Int. J. Heat Mass Transfer
11
,
1741
1752
(
1968
).
28.
T. H.
Kuehn
and
R. J.
Goldstein
, “
An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders
,”
J. Fluid Mech.
74
,
695
719
(
1976
).
29.
L. R.
Mack
and
E. H.
Bishop
, “
Natural convection between horizontal concentric cylinder for low Rayleigh numbers
,”
Q. J. Mech. Appl. Math.
21
,
223
241
(
1968
).
30.
U. K.
Sarkar
,
N.
Biswas
, and
H. F.
Öztop
, “
Multiplicity of solution for natural convective heat transfer and entropy generation in a semi-elliptical enclosure
,”
Phys. Fluids
33
,
013606
(
2021
).
31.
G. R.
Bigg
,
M. R.
Wadley
,
D. P.
Stevens
, and
J. A.
Johnson
, “
Modelling the dynamics and thermodynamics of icebergs
,”
Cold Reg. Sci. Technol.
26
,
113
135
(
1997
).
32.
E. W.
Hester
,
C. D.
McConnochie
,
C.
Cenedese
,
L.-A.
Couston
, and
G.
Vasil
, “
Aspect ratio affects iceberg melting
,”
Phys. Rev. Fluids
6
,
023802
(
2021
).
33.
T. P.
Kumar
, “
Casting simulation methods
,” in
Comprehensive Materials Processing
, edited by
S.
Hashmi
,
G. F.
Batalha
,
C. J.
Van Tyne
, and
B.
Yilbas
(
Elsevier
,
Oxford
,
2014
), Chap. 5.12, pp.
235
257
.
34.
J. J.
Derby
and
A.
Yeckel
, “
modeling of crystal growth processes
,” in
Crystal Growth—From Fundamentals to Technology
, edited by
G.
Müller
,
J.-J.
Métois
, and
P.
Rudolph
(
Elsevier Science
,
Amsterdam
,
2004
), pp.
143
167
.
35.
J. M.
Huang
,
M. N. J.
Moore
, and
L.
Ristroph
, “
Shape dynamics and scaling laws for a body dissolving in fluid flow
,”
J. Fluid Mech.
765
,
R3
(
2015
).
36.
S. S.
Pegler
and
M. S.
Davies Wykes
, “
Shaping of melting and dissolving solids under natural convection
,”
J. Fluid Mech.
900
,
A35
(
2020
).
37.
S. S.
Pegler
and
M. S.
Davies Wykes
, “
The convective Stefan problem: Shaping under natural convection
,”
J. Fluid Mech.
915
,
A86
(
2021
).
38.
M. N. J.
Moore
,
L.
Ristroph
,
S.
Childress
,
J.
Zhang
, and
M. J.
Shelley
, “
Self-similar evolution of a body eroding in a fluid flow
,”
Phys. Fluids
25
,
116602
(
2013
).
39.
J.-G.
Liu
,
M.
Tang
,
L.
Wang
, and
Z.
Zhou
, “
Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics
,” arXiv:1802.00655 (
2019
).
40.
N.
Vauchelet
and
E.
Zatorska
, “
Incompressible limit of the Navier–Stokes model with a growth term
,”
Nonlinear Anal.
163
,
34
59
(
2017
).
41.
B.
Favier
,
J.
Purseed
, and
L.
Duchemin
, “
Rayleigh–Bénard convection with a melting boundary
,”
J. Fluid Mech.
858
,
437
473
(
2019
).
42.
M. S.
Davies Wykes
,
J. M.
Huang
,
G. A.
Hajjar
, and
L.
Ristroph
, “
Self-sculpting of a dissolvable body due to gravitational convection
,”
Phys. Rev. Fluids
3
,
043801
(
2018
).
43.
C.
Cohen
,
M.
Berhanu
,
J.
Derr
, and
S.
Courrech du Pont
, “
Buoyancy-driven dissolution of inclined blocks: Erosion rate and pattern formation
,”
Phys. Rev. Fluids
5
,
053802
(
2020
).
44.
Q.
Miao
,
Q.
Yuan
, and
Y.-P.
Zhao
, “
Shape evolution and scaling analysis of soluble cylinders in dissolutive flow
,”
Phys. Fluids
32
,
102103
(
2020
).
45.
J. M.
Huang
,
M. J.
Shelley
, and
D. B.
Stein
, “
A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the immersed boundary smooth extension method
,”
J. Comput. Phys.
432
,
110162
(
2021
).
46.
A. J.
Wells
and
M. G.
Worster
, “
Melting and dissolving of a vertical solid surface with laminar compositional convection
,”
J. Fluid Mech.
687
,
118
140
(
2011
).
47.
A.
Kovács
,
C.
Breward
,
K.
Einarsrud
,
S.
Halvorsen
,
E.
Nordgård-Hansen
,
E.
Manger
,
A.
Münch
, and
J.
Oliver
, “
A heat and mass transfer problem for the dissolution of an alumina particle in a cryolite bath
,”
Int. J. Heat Mass Transfer
162
,
120232
(
2020
).
48.
M.
Perez
, “
Gibbs–Thomson effects in phase transformations
,”
Scr. Mater.
52
,
709
712
(
2005
).
49.
J. F.
Thompson
,
F. C.
Thames
, and
C.
Mastin
, “
Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies
,”
J. Comput. Phys.
15
,
299
319
(
1974
).
50.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
(
Pearson Education
,
2007
).
51.
L.
Bao
and
G.
Lipscomb
, “
Mass transfer in axial flows through randomly packed fiber bundles
,” in
New Insights into Membrane Science and Technology: Polymeric and Biofunctional Membranes
, edited by
D.
Bhattacharyya
and
D. A.
Butterfield
(
Elsevier
,
2003
), Chap. 1, Vol.
8
, pp.
5
26
.
52.
S.
Bower
and
J.
Saylor
, “
A study of the Sherwood–Rayleigh relation for water undergoing natural convection-driven evaporation
,”
Int. J. Heat Mass Transfer
52
,
3055
3063
(
2009
).
53.
J. R.
Lloyd
and
W. R.
Moran
, “
Natural convection adjacent to horizontal surface of various planforms
,”
J. Heat Transfer
96
,
443
447
(
1974
).
54.
R.
Goldstein
,
E.
Sparrow
, and
D.
Jones
, “
Natural convection mass transfer adjacent to horizontal plates
,”
Int. J. Heat Mass Transfer
16
,
1025
1035
(
1973
).
You do not currently have access to this content.