To elucidate the characteristics of droplet breakup induced by a shock wave and vortex ring behind the shock, experiments were conducted with water and various glycerol mixtures under different shock Mach numbers. High-speed visualization system, pressure testing system, and laser particle analyzer were applied to record the interaction process between droplets and a vortex ring after a shock wave. The results show that two stages of interaction are identified, including droplet-shock wave interaction and droplet-vortex ring interaction. Small clusters of droplets separated from the mother droplet will exhibit “white dot” and “swing arms” structures when subjected to vortical flow. At high shock Mach numbers, which generate strong circulation, the centrifugal force from rotation will cause droplet deformation and fragmentation. However, droplets with higher viscosity impede the stretching effect of the vortical flow, resulting in less deformation and fragmentation. Our data could provide valuable insights into droplet breakup in internal combustion engines and other industrial operations.

1.
B. H.
Bang
,
C. S.
Ahn
,
D. Y.
Kim
,
J. G.
Lee
,
H. M.
Kim
,
Y. T.
Jeong
,
W. S.
Yoon
,
S. S.
Al-Deyab
,
J. H.
Yoo
,
S. S.
Yoon
, and
A. L.
Yarin
, “
Breakup process of cylindrical viscous liquid specimens after a strong explosion in the core
,”
Phys. Fluids
28
,
094105
(
2016
).
2.
Y.
Liang
,
Y. Z.
Jiang
,
C. Y.
Wen
, and
Y.
Liu
, “
Interaction of a planar shock wave and a water droplet embedded with a vapour cavity
,”
J. Fluid Mech.
885
,
R6
(
2020
).
3.
S. M. O.
O'Connell
,
R. M. P.
Tanyag
,
D.
Verma
,
C.
Bernando
,
W.
Pang
,
C.
Bacellar
,
C. A.
Saladrigas
,
J.
Mahl
,
B. W.
Toulson
,
Y.
Kumagai
,
P.
Walter
,
F.
Ancilotto
,
M.
Barranco
,
M.
Pi
,
C.
Bostedt
,
O.
Gessner
, and
A. F.
Vilesov
, “
Angular momentum in rotating superfluid droplets
,”
Phys. Rev. Lett.
124
,
215301
(
2020
).
4.
X. Y.
Li
and
K.
Sarkar
, “
Drop dynamics in an oscillating extensional flow at finite Reynolds numbers
,”
Phys. Fluids
17
,
027103
(
2005
).
5.
W. W.
Grabowski
and
L. P.
Wang
, “
Growth of cloud droplets in a turbulent environment
,”
Annu. Rev. Fluid Mech.
45
,
293
(
2013
).
6.
C.
Peng
,
O. M.
Ayala
, and
L. P.
Wang
, “
A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow
,”
J. Fluid Mech.
875
,
1096
(
2019
).
7.
L. P.
Wang
,
O.
Ayala
,
S. E.
Kasprzak
, and
W. W.
Grabowski
, “
Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere
,”
J. Atmos. Sci.
62
,
2433
(
2005
).
8.
W. G.
Cao
,
Q. F.
Qin
,
W.
Cao
,
Y. H.
Lan
,
T.
Chen
,
S.
Xu
, and
X.
Cao
, “
Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel
,”
Powder Technol.
310
,
17
(
2017
).
9.
G.
Sridhar
and
J.
Katz
, “
Drag and lift forces on microscopic bubbles entrained by a vortex
,”
Phys. Fluids
7
,
389
(
1995
).
10.
A.
Revuelta
, “
On the interaction of a bubble and a vortex ring at high Reynolds numbers
,”
Eur. J. Mech., B: Fluids
29
,
119
(
2010
).
11.
N. K.
Jha
and
R. N.
Govardhan
, “
Interaction of a vortex ring with a single bubble: Bubble and vorticity dynamics
,”
J. Fluid Mech.
773
,
460
(
2015
).
12.
S. K.
Aggarwal
,
T. W.
Park
, and
V. R.
Katta
, “
Unsteady spray behavior in a heated jet shear layer: Droplet-vortex interactions
,”
Combust. Sci. Technol.
113
,
429
(
1996
).
13.
X. Y.
Li
and
K.
Sarkar
, “
Drop deformation and breakup in a vortex at finite inertia
,”
J. Fluid Mech.
564
,
1
(
2006
).
14.
C. D.
Eastwood
,
L.
Armi
, and
J. C.
Lasheras
, “
The breakup of immiscible fluids in turbulent flows
,”
J. Fluid Mech.
502
,
309
(
2004
).
15.
R.
Andersson
and
B.
Andersson
, “
On the breakup of fluid particles in turbulent flows
,”
AIChE J.
52
,
2020
(
2006
).
16.
D.
Jiao
,
K.
Jiao
,
F.
Zhang
, and
Q.
Du
, “
Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles
,”
Fuel
247
,
302
(
2019
).
17.
S.
Elghobashi
, “
Direct numerical simulation of turbulent flows laden with droplets or bubbles
,”
Annu. Rev. Fluid Mech.
51
,
217
(
2019
).
18.
K.
Rajamanickam
and
S.
Basu
, “
On the dynamics of vortex–droplet interactions, dispersion and breakup in a coaxial swirling flow
,”
J. Fluid Mech.
827
,
572
(
2017
).
19.
S.
Sharma
,
A. P.
Singh
, and
S.
Basu
, “
On the dynamics of vortex–droplet co-axial interaction: Insights into droplet and vortex dynamics
,”
J. Fluid Mech.
918
,
A37
(
2021
).
20.
J. C.
Lasheras
,
C.
Eastwood
,
C.
Martinez-Bazan
, and
J. L.
Montanes
, “
A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow
,”
Int. J. Multiphase Flow
28
,
247
(
2002
).
21.
Y. X.
Liao
and
D.
Lucas
, “
A literature review of theoretical models for drop and bubble breakup in turbulent dispersions
,”
Chem. Eng. Sci.
64
,
3389
(
2009
).
22.
H.
Zheng
,
W.
Zhu
,
X.
Jia
, and
N.
Zhao
, “
Eulerian–Lagrangian modeling of deflagration to detonation transition in n-decane/oxygen/nitrogen mixtures
,”
Phys. Fluids
34
,
126110
(
2022
).
23.
W. L.
Zhu
,
H. T.
Zheng
, and
N. B.
Zhao
, “
Numerical investigations on the deformation and breakup of an n-decane droplet induced by a shock wave
,”
Phys. Fluids
34
,
063306
(
2022
).
24.
T.
Kamiya
,
M.
Asahara
,
T.
Yada
,
K.
Mizuno
, and
T.
Miyasaka
, “
Study on characteristics of fragment size distribution generated via droplet breakup by high-speed gas flow
,”
Phys. Fluids
34
,
012118
(
2022
).
25.
Y.
Sugiyama
,
T.
Tamba
, and
K.
Ohtani
, “
Numerical study on a blast mitigation mechanism by a water droplet layer: Validation with experimental results, and the effect of the layer radius
,”
Phys. Fluids
34
,
076104
(
2022
).
26.
L. J.
Liu
and
Q.
Zhang
, “
Numerical simulations of the effects of droplet size and concentration on vapour-droplet JP-10/air detonations
,”
Cent. Eur. J. Energ. Mater.
15
,
175
(
2018
).
27.
H. W.
Wan
,
Y. Q.
Wen
, and
Q.
Zhang
, “
Explosion behaviors of vapor-liquid propylene oxide/air mixture under high-temperature source ignition
,”
Fuel
331
,
125815
(
2023
).
28.
X.
Song
,
B.
Li
, and
L.
Xie
, “
Experimental investigation on the properties of liquid film breakup induced by shock waves
,”
Chin. Phys. B
29
,
086201
(
2020
).
29.
X.
Song
,
L.
Jiang
,
L.
Xie
,
B.
Li
, and
D.
Zhang
, “
Observation of von Kármán vortex street in a droplet breakup
,”
Phys. Fluids
33
,
093301
(
2021
).
30.
C.-H.
Bai
,
X.-Y.
Zhao
,
J.
Yao
, and
B.-F.
Sun
, “
Numerical investigation of the shockwave overpressure fields of multi-sources FAE explosions
,”
Def. Technol.
17
,
1168
(
2021
).
31.
X.
Song
,
J.
Zhang
,
D.
Zhang
,
L.
Xie
, and
B.
Li
, “
Dispersion and explosion characteristics of unconfined detonable aerosol and its consequence analysis to humans and buildings
,”
Process Saf. Environ. Prot.
152
,
66
(
2021
).
32.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Annu. Rev. Fluid Mech.
24
,
235
(
1992
).
33.
J. H.
Arakeri
,
D.
Das
,
A.
Krothapalli
, and
L.
Lourenco
, “
Vortex ring formation at the open end of a shock tube: A particle image velocimetry study
,”
Phys. Fluids
16
,
1008
(
2004
).
34.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
(
1960
).
35.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
(
1972
).
36.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1–14
,
170
(
1882
).
37.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
38.
K.
Lehmann
,
H.
Siebert
,
M.
Wendisch
, and
R. A.
Shaw
, “
Evidence for inertial droplet clustering in weakly turbulent clouds
,”
Tellus, Ser. B: Chem. Phys. Meteorol.
59
,
57
(
2007
).
39.
H.
Tennekes
,
J. L.
Lumley
, and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
40.
L.-P.
Wang
and
M. R.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
(
1993
).
41.
H.
Xie
,
Y.
Cao
,
F.
Qin
, and
X.
Luo
, “
The slip effect of micro-droplets in Rankine vortex
,”
Sci. Sin.-Phys. Mech. Astron.
47
,
124702
(
2017
).
42.
X.
Luo
,
Unsteady Flows with Phase Transition
(
Eindhoven University of Technology
,
2002
).
You do not currently have access to this content.