Slurry transportation via pipelines has garnered growing attention across various industries worldwide, thanks to its efficiency and environmental friendliness. It has emerged as a vital tool for conveying significant volumes of raw phosphate material from extraction points to industrial plants, where it is processed into fertilizers. Yet, optimal and secure pipeline operations necessitate the careful calibration of several physical parameters and their interplay to minimize energy losses. A thorough exploration of the flow pressure drop and the various factors that influence it constitutes a crucial step in attaining this goal. The computational fluid dynamics techniques required to simulate three-dimensional slurry pipe flows pose formidable challenges, primarily due to their high computational costs. Furthermore, numerical solutions for slurry flows are frequently subject to uncertainties arising from the initial and boundary conditions in the mathematical models employed. In this study, we propose the use of polynomial chaos expansions to estimate the uncertainty inherent in the desired slurry flow and perform a sensitivity analysis of flow energy efficiency. In this framework, five parameters are considered as random variables with a given probability distribution over a prescribed range of investigation. The uncertainty is then propagated through the two-phase flow model to statistically quantify their effect on the results. Our findings reveal that variations in slurry velocity and particle size play a pivotal role in determining energy efficiency. Therefore, controlling these factors represents a critical step in ensuring the efficient and safe transportation of slurry through pipelines.

1.
K. C.
Wilson
,
G. R.
Addie
,
A.
Sellgren
, and
R.
Clift
,
Centrifugal Pumps
(
Springer
,
2006
).
2.
J.
Schaan
,
R. J.
Sumner
,
R. G.
Gillies
, and
C. A.
Shook
, “
The effect of particle shape on pipeline friction for Newtonian slurries of fine particles
,”
Can. J. Chem. Eng.
78
,
717
725
(
2000
).
3.
L.
Pullum
and
D. J.
McCarthy
, “
Ultra high concentration and hybrid hydraulic transport systems
,” in
4th International Conference on Bulk Materials, Storage, Handling and Transportation: 7th International Symposium on Freight Pipelines
(
Institution of Engineers, Australia
,
1992
), pp.
91
95
.
4.
J.
Wu
,
L.
Graham
,
S.
Wang
, and
R.
Parthasarathy
, “
Energy efficient slurry holding and transport
,”
Miner. Eng.
23
,
705
712
(
2010
).
5.
A.
Bakker
,
A. H.
Haidari
, and
L. M.
Oshinowo
, “
Realize greater benefits from CFD
,”
Chem. Eng. Prog.
97
,
45
53
(
2001
), see https://www.scopus.com/record/display.uri?eid=2-s2.0-0035263242&origin=inward&txGid=71502dc26a436ba519c3b58937b21ef4
6.
F. H.
Hernandez
,
A. J.
Blanco
, and
L.
Rojas-Solorzano
, “
CFD modeling of slurry flows in horizontal pipes
,” in
ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
(
ASME
,
2008
), Vol.
48401
, pp.
857
863
.
7.
K.
Ekambara
,
R. S.
Sanders
,
K.
Nandakumar
, and
J. H.
Masliyah
, “
Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX
,”
Ind. Eng. Chem. Res.
48
,
8159
8171
(
2009
).
8.
J.
Wang
,
S.
Wang
,
T.
Zhang
, and
Y.
Liang
, “
Numerical investigation of ice slurry isothermal flow in various pipes
,”
Int. J. Refrig.
36
,
70
80
(
2013
).
9.
M.-Z.
Li
,
Y.-P.
He
,
Y.-D.
Liu
, and
C.
Huang
, “
Hydrodynamic simulation of multi-sized high concentration slurry transport in pipelines
,”
Ocean Eng.
163
,
691
705
(
2018
).
10.
M. K.
Singh
,
S.
Kumar
, and
D.
Ratha
, “
Computational analysis on disposal of coal slurry at high solid concentrations through slurry pipeline
,”
Int. J. Coal Prep. Util.
40
,
116
130
(
2020
).
11.
S.
Dixit
,
S.
Kumar
,
A. R.
Pradhan
,
S.
Kumar
,
K.
Kumar
,
N. I.
Vatin
,
T.
Miroshnikova
, and
K.
Epifantsev
, “
Numerical simulation of sand–water slurry flow through pipe bend using CFD
,”
Int. J. Interact. Des. Manuf.
(published online).
12.
S. G.
Sontti
,
M.
Sadeghi
,
K.
Zhou
,
E.
Zheng
, and
X.
Zhang
, “
Computational fluid dynamics investigation of bitumen residues in oil sands tailings transport in an industrial horizontal pipe
,”
Phys. Fluids
35
,
013340
(
2023
).
13.
C.
Wan
,
S.
Xiao
,
D.
Zhou
,
H.
Zhu
,
Y.
Bao
,
K.
Kakanda
, and
Z.
Han
, “
Numerical simulation on transportation behavior of gradated coarse particles in deep-sea vertical pipe transportation
,”
Phys. Fluids
35
,
043328
(
2023
).
14.
H.
Zhou
,
J.
Guo
,
T.
Zhang
,
M.
Li
,
T.
Tang
, and
H.
Gou
, “
Eulerian multifluid simulations of proppant transport with different sizes
,”
Phys. Fluids
35
,
043314
(
2023
).
15.
T.
Joshi
,
O.
Parkash
, and
G.
Krishan
, “
Slurry flow characteristics through a horizontal pipeline at different Prandtl number
,”
Powder Technol.
413
,
118008
(
2023
).
16.
K.
Hiltunen
,
A.
Jäsberg
,
S.
Kallio
,
H.
Karema
,
M.
Kataja
,
A.
Koponen
,
M.
Manninen
, and
V.
Taivassalo
, “
Multiphase Flow Dynamics
,” Theory and Numerics, VTT Publications 722 (
2009
).
17.
C. E.
Brennen
and
C. E.
Brennen
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
2005
).
18.
A.
Saltelli
and
S.
Tarantola
, “
On the relative importance of input factors in mathematical models: Safety assessment for nuclear waste disposal
,”
J. Am. Stat. Assoc.
97
,
702
709
(
2002
).
19.
I. M.
Sobol
, “
Sensitivity analysis for non-linear mathematical models
,”
Math. Model. Comput. Exp.
1
,
407
414
(
1993
), see https://www.mathnet.ru/links/f6dc7840584f8c73b6d9f8371851e21d/mm2320.pdf.
20.
I. M.
Sobol
, “
Global sensitivity indices for non-linear mathematical models and their Monte Carlo estimates
,”
Math. Comput. Simul.
55
,
271
280
(
2001
).
21.
A.
Saltelli
,
M.
Ratto
,
S.
Tarantola
, and
F.
Campolongo
, “
Sensitivity analysis practices: Strategies for model-based inference
,”
Reliab. Eng. Syst. Saf.
91
,
1109
1125
(
2006
).
22.
G.
Blatman
and
B.
Sudret
, “
Efficient computation of global sensitivity indices using sparse polynomial chaos expansions
,”
Reliab. Eng. Syst. Saf.
95
,
1216
1229
(
2010
).
23.
G.
Blatman
and
B.
Sudret
, “
Adaptive sparse polynomial chaos expansion based on least angle regression
,”
J. Comput. Phys.
230
,
2345
2367
(
2011
).
24.
A.
Al-Ghosoun
,
N.
El Moçayd
, and
M.
Seaid
, “
A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows
,”
Environ. Model. Software
144
,
105176
(
2021
).
25.
A.
Alghosoun
,
N. E.
Mocayd
, and
M.
Seaid
, “
A nonintrusive reduced-order model for uncertainty quantification in numerical solution of one-dimensional free-surface water flows over stochastic beds
,”
Int. J. Comput. Methods
19
,
2150073
(
2022
).
26.
N.
El Moçayd
,
M. S.
Mohamed
,
D.
Ouazar
, and
M.
Seaid
, “
Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition
,”
Reliab. Eng. Syst. Saf.
195
,
106733
(
2020
).
27.
N. E.
Mocayd
,
M. S.
Mohamed
, and
M.
Seaid
, “
Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies
,”
J. Comput. Sci.
53
,
101344
(
2021
).
28.
O. P.
Le Maıtre
,
O. M.
Knio
,
B. J.
Debusschere
,
H. N.
Najm
, and
R. G.
Ghanem
, “
A multigrid solver for two-dimensional stochastic diffusion equations
,”
Comput. Methods Appl. Mech. Eng.
192
,
4723
4744
(
2003
).
29.
F.
Simon
,
P.
Guillen
,
P.
Sagaut
, and
D.
Lucor
, “
A gPC-based approach to uncertain transonic aerodynamics
,”
Comput. Methods Appl. Mech. Eng.
199
,
1091
1099
(
2010
).
30.
N.
El Moçayd
and
M.
Seaid
, “
Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry
,”
Reliab. Eng. Syst. Saf.
216
,
107923
(
2021
).
31.
R. G.
Ghanem
and
P. D.
Spanos
,
Stochastic Finite Elements: A Spectral Approach
(
Courier Corporation
,
2003
).
32.
B.
Sudret
, “
Global sensitivity analysis using polynomial chaos expansions
,”
Reliab. Eng. Syst. Saf.
93
,
964
979
(
2008
).
33.
H.
Zhong
,
X.
Lan
,
J.
Gao
,
Y.
Zheng
, and
Z.
Zhang
, “
The difference between specularity coefficient of 1 and no-slip solid phase wall boundary conditions in CFD simulation of gas–solid fluidized beds
,”
Powder Technol.
286
,
740
743
(
2015
).
34.
J.
Rusconi
,
A.
Lakhouaja
, and
M.
Kopuz
, “
The design and engineering of the 187 km Khouribga to Jorf Lasfar phosphate slurry pipeline
,”
Procedia Eng.
138
,
142
150
(
2016
).
35.
D.
Gidaspow
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
(
Academic Press
,
1994
).
36.
D.
Gidaspow
,
R.
Bezburuah
, and
J.
Ding
, “
Hydrodynamics of circulating fluidized beds: Kinetic theory approach
,”
Technical Report No. ON:DE92002879
(
Illinois Institute of Technology
,
Chicago
,
1991
).
37.
M.
Syamlal
,
W.
Rogers
, and
T. J.
O'Brien
, “
MFIX documentation: Volume 1, theory guide
,”
Technical Report Nos. DOE/METC-9411004 and NTIS/DE9400087
(
National Technical Information Service
,
Springfield, VA
,
1993
).
38.
D. G.
Schaeffer
, “
Instability in the evolution equations describing incompressible granular flow
,”
J. Differ. Equations
66
,
19
50
(
1987
).
39.
C. K. K.
Lun
,
S. B.
Savage
,
D. J.
Jeffrey
, and
N.
Chepurniy
, “
Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield
,”
J. Fluid Mech.
140
,
223
256
(
1984
).
40.
J.
Ding
and
D.
Gidaspow
, “
A bubbling fluidization model using kinetic theory of granular flow
,”
AIChE J.
36
,
523
538
(
1990
).
41.
M.
Elkarii
,
R.
Boukharfane
,
S.
Benjelloun
, and
C.
Bouallou
, “
A CFD-based surrogate model for predicting slurry pipe flow pressure drops
,”
Part. Sci. Technol.
41
,
432
411
(
2023
).
42.
A.
Tomiyama
,
H.
Tamai
,
I.
Zun
, and
S.
Hosokawa
, “
Transverse migration of single bubbles in simple shear flows
,”
Chem. Eng. Sci.
57
,
1849
1858
(
2002
).
43.
S.
Sarı
,
Ş.
Ergün
,
M.
Barık
,
C.
Kocar
, and
C. N.
Sökmen
, “
Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach
,”
Ann. Nucl. Energy
36
,
222
232
(
2009
).
44.
D. C.
Wilcox
, “
Reassessment of the scale-determining equation for advanced turbulence models
,”
AIAA J.
26
,
1299
1310
(
1988
).
45.
P. K.
Swamee
and
A. K.
Jain
, “
Explicit equations for pipe-flow problems
,”
J. Hydraul. Div.
102
,
657
664
(
1976
).
46.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
47.
R. G.
Gillies
,
C. A.
Shook
, and
J.
Xu
, “
Modelling heterogeneous slurry flows at high velocities
,”
Can. J. Chem. Eng.
82
,
1060
1065
(
2008
).
48.
D.
Xiu
and
G. E.
Karniadakis
, “
The Wiener–Askey polynomial chaos for stochastic differential equations
,”
SIAM J. Sci. Comput.
24
,
619
644
(
2002
).
49.
B.
Peherstorfer
,
K.
Willcox
, and
M.
Gunzburger
, “
Optimal model management for multifidelity Monte Carlo estimation
,”
SIAM J. Sci. Comput.
38
,
A3163
A3194
(
2016
).
50.
Y.
Yao
,
X.
Huan
, and
J.
Capecelatro
, “
Multi-fidelity uncertainty quantification of particle deposition in turbulent pipe flow
,”
J. Aerosol Sci.
166
,
106065
(
2022
).
51.
M.
Berveiller
,
B.
Sudret
, and
M.
Lemaire
, “
Stochastic finite element: A non intrusive approach by regression
,”
Eur. J. Comput. Mech.
15
,
81
92
(
2006
).
52.
B.
Efron
,
T.
Hastie
,
I.
Johnstone
, and
R.
Tibshirani
, “
Least angle regression
,”
Ann. Stat.
32
,
407
499
(
2004
).
53.
G.
Blatman
and
B.
Sudret
, “
An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
,”
Probab. Eng. Mech.
25
,
183
197
(
2010
).
54.
A. M.
Molinaro
,
R.
Simon
, and
R. M.
Pfeiffer
, “
Prediction error estimation: A comparison of resampling methods
,”
Bioinformatics
21
,
3301
3307
(
2005
).
55.
N.
El Moçayd
,
S.
Ricci
,
N.
Goutal
,
M. C.
Rochoux
,
S.
Boyaval
,
C.
Goeury
,
D.
Lucor
, and
O.
Thual
, “
Polynomial surrogates for open-channel flows in random steady state
,”
Environ. Model. Assess.
23
,
309
331
(
2018
).
56.
G.
Deman
,
K.
Konakli
,
B.
Sudret
,
J.
Kerrou
,
P.
Perrochet
, and
H.
Benabderrahmane
, “
Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model
,”
Reliab. Eng. Syst. Saf.
147
,
156
169
(
2016
).
57.
V.
Matoušek
,
J.
Krupička
, and
M.
Kesely
, “
A layered model for inclined pipe flow of settling slurry
,”
Powder Technol.
333
,
317
326
(
2018
).
You do not currently have access to this content.