We study the cavitating flow over a backward facing step with an incompressible polydisperse cavitation model. The model can predict experimental observations for this flow reasonably well, including the shedding cloud characterized by the condensation front, cavity length, void fraction, and shedding frequency. All model variations produced shedding cavities, but the turbulence model and grid resolution are essential for better predictions, with delayed detached eddy simulation (DDES) performing better than Reynolds-averaged Navier–Stokes. Quantities, such as pressures at key points, maximum void fraction location, and shedding frequency, are mildly sensitive to those factors. Finer DDES grid resolution, crucial to resolve small vortices where cavitation occurs in their low pressure cores, improves predictions. Since a fully incompressible model produces a condensation front that follows well the experimental trends, it is concluded that compressibility is not a necessary condition for the formation of a condensation front. Consequently, the speed of sound in the mixture does not appear to play an important role in the front formation and evolution. The polydisperse nature of the model allows prediction of the bubble size distribution. Small bubbles concentrate on the downstream section of the cavity, where cavity collapse is strongest and bubble fission is most intense, while larger bubbles reside near the step where the flow is milder. The condensation front is a moving source of vorticity for the liquid phase where the “compressibility,” in the sense of mixture density changes due to void fraction changes, and baroclinic effects are significant, but the buoyancy effect is negligible.

1.
A.
Gnanaskandan
and
K.
Mahesh
, “
A numerical method to simulate turbulent cavitating flows
,”
Int. J. Multiphase Flow
70
,
22
(
2015
).
2.
A. K.
Singhal
,
M. M.
Athavale
,
H.
Li
, and
Y.
Jiang
, “
Mathematical basis and validation of the full cavitation model
,”
J. Fluids Eng.
124
,
617
(
2002
).
3.
Z.
Qian
,
Z.
Wang
,
C.
Geng
, and
X.
Luo
, “
Vortex and cavity dynamics for the tip-leakage cavitation over a hydrofoil
,”
Phys. Fluids
34
,
093303
(
2022
).
4.
Y.
Zhi
,
R.
Huang
,
R.
Qiu
,
Y.
Wang
, and
C.
Huang
, “
LES investigation into the cavity shedding dynamics and cavitation–vortex interaction around a surface-piercing hydrofoil
,”
Phys. Fluids
34
,
123314
(
2022
).
5.
C.-T.
Hsiao
and
G.
Chahine
, “
Prediction of tip vortex cavitation inception using coupled spherical and nonspherical bubble models and Navier–Stokes computations
,”
J. Mar. Sci. Technol.
8
,
99
(
2004
).
6.
E.
Giannadakis
,
M.
Gavaises
, and
C.
Arcoumanis
, “
Modelling of cavitation in diesel injector nozzles
,”
J. Fluid Mech.
616
,
153
(
2008
).
7.
C.-T.
Hsiao
and
G. L.
Chahine
, “
Numerical study of cavitation inception due to vortex/vortex interaction in a ducted propulsor
,”
J. Ship Res.
52
,
114
(
2008
).
8.
C.-T.
Hsiao
,
J.
Ma
, and
G. L.
Chahine
, “
Multiscale tow-phase flow modeling of sheet and cloud cavitation
,”
Int. J. Multiphase Flow
90
,
102
(
2017
).
9.
B.
Tian
,
L.
Li
,
Y.
Meng
, and
B.
Huang
, “
Multiscale modeling of different cavitating flow patterns around NACA66 hydrofoil
,”
Phys. Fluids
34
,
103322
(
2022
).
10.
J.
Li
and
P. M.
Carrica
, “
A population balance cavitation model
,”
Int. J. Multiphase Flow
138
,
103617
(
2021
).
11.
H.
Ganesh
,
S. A.
Mäkiharju
, and
S. L.
Ceccio
, “
Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
,”
J. Fluid Mech.
802
,
37
(
2016
).
12.
G.
Maurice
,
N.
Machicoane
,
S.
Barre
, and
H.
Djeridi
, “
Coupled x-ray high-speed imaging and pressure measurements in a cavitating backward facing step flow
,”
Phys. Rev. Fluids
6
,
044311
(
2021
).
13.
P. S.
Russell
,
D. R.
Giosio
,
J. A.
Venning
,
B. W.
Pearce
,
P. A.
Brandner
, and
S. L.
Ceccio
, “
Microbubble generation from condensation and turbulent breakup of sheet cavitation
,” in
31st Symposium on Naval Hydrodynamics
,
Monterey, California
,
2016
.
14.
V.
Aeschlimann
,
S.
Barre
, and
S.
Legoupil
, “
X-ray attenuation measurements in a cavitating mixing layer for instantaneous two-dimensional void ratio determination
,”
Phys. Fluids
23
,
055101
(
2011
).
15.
E. S. C.
Allan
,
L.
Barbaca
,
J. A.
Venning
,
P. S.
Russell
,
B. W.
Pearce
, and
P. A.
Brandner
, “
Nucleation and cavitation inception in high Reynolds number shear layers
,”
Phys. Fluids
35
,
013317
(
2023
).
16.
P. S.
Russell
,
L.
Barbaca
,
J. A.
Venning
,
B. W.
Pearce
, and
P. A.
Brandner
, “
Influence of nucleation on cavitation inception in tip leakage flows
,”
Phys. Fluids
35
,
013341
(
2023
).
17.
G. T.
Bokman
,
L.
Biasiori-Poulanges
,
B.
Lukić
,
C.
Bourquard
,
D. W.
Meyer
,
A.
Rack
, and
O.
Supponen
, “
High-speed x-ray phase-contrast imaging of single cavitation bubbles near a solid boundary
,”
Phys. Fluids
35
,
013322
(
2023
).
18.
A.
Bhatt
,
H.
Ganesh
, and
S. L.
Ceccio
, “
Cavitating flow behind a backward facing step
,”
Int. J. Multiphase Flow
139
,
103584
(
2021
).
19.
J.
Katz
and
T. J.
O'Hern
, “
Cavitation in large scale shear flows
,”
J. Fluids Eng.
108
,
373
(
1986
).
20.
K.
Agarwal
,
O.
Ram
, and
J.
Katz
, “
Cavitating structures at inception in turbulent shear flow
,” in
10th International Symposium on Cavitation
,
Baltimore
,
Maryland
,
2018
.
21.
E. J.
Foeth
, “The structure of three-dimensional sheet cavitation,” Ph.D. thesis (
TU Delft
,
2008
).
22.
J.
Wu
,
H.
Ganesh
, and
S.
Ceccio
, “
Multimodal partial cavity shedding on a two-dimensional hydrofoil and its relation to the presence of bubbly shocks
,”
Exp. Fluids
60
,
66
(
2019
).
23.
M.
Callenaere
,
J.-P.
Franc
,
J.-M.
Michel
, and
M.
Riondet
, “
The cavitation instability induced by the development of a re-entrant jet
,”
J. Fluid Mech.
444
,
223
(
2001
).
24.
G.
Zhang
,
D.
Zhang
,
M.
Ge
,
M.
Petkovšek
, and
O.
Coutier-Delgosha
, “
Experimental investigation of three distinct mechanisms for the transition from sheet to cloud cavitation
,”
Int. J. Heat Mass Transfer
197
,
123372
(
2022
).
25.
B.
Budich
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical simulation and analysis of condensation shocks in cavitating flow
,”
J. Fluid Mech.
838
,
759
(
2018
).
26.
C.
Eskilsson
and
R.
Bensow
, “
A compressible model for cavitating flow: Comparison between Euler, RANS and LES simulations
,” in
29th Symposium on Naval Hydrodynamics
,
Gothenburg, Sweden
,
2012
.
27.
M.
Bhatt
and
K.
Mahesh
, “
Numerical investigation of partial cavitation regimes over a wedge using large eddy simulation
,”
Int. J. Multiphase Flow
122
,
103155
(
2020
).
28.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
29.
S. E.
Rigby
and
P. W.
Sielicki
, “
An investigation of TNT equivalence of hemispherical PE4 charges
,”
Eng. Trans.
62
,
423
(
2014
).
30.
T.
Trummler
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by Large-Eddy Simulation
,”
Int. J. Multiphase Flow
125
,
103215
(
2020
).
31.
O.
Coutier-Delgosha
, “Modélisation des écoulements cavitants: étude des comportements instationnaires et application tridimensionnelle aux turbomachines,” Ph.D. thesis (
Grenoble INPG
,
2001
).
32.
P. J.
Zwart
,
A. G.
Gerber
, and
T.
Belamri
, “
A two-phase flow model for predicting cavitation dynamics
,” in
5th International Conference on Multiphase Flow
, Yokohama, Japan,
2004
.
33.
D. A.
Drew
and
S. L.
Passman
,
Theory of Multicomponent Fluids
(
Springer
,
New York, NY
,
1999
).
34.
P. M.
Carrica
,
D.
Drew
,
F.
Bonetto
, and
R. T.
Lahey
, “
A polydisperse model for bubbly two-phase flow around surface ship
,”
Int. J. Multiphase Flow
25
,
257
(
1999
).
35.
J.
Li
,
A. M.
Castro
, and
P. M.
Carrica
, “
A pressure-velocity coupling approach for high void fraction free surface bubbly flows in overset curvilinear grids
,”
Int. J. Numer. Methods Fluids
79
,
343
(
2015
).
36.
A. M.
Castro
and
P. M.
Carrica
, “
Eulerian polydispersed modeling of bubbly flows around ships with application to Athena R/V
,”
Int. Shipbuild. Prog.
60
,
403
(
2013
).
37.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
4th International Conference on Multiphase Flow
,
New Orleans
,
2001
.
38.
M. J.
Prince
and
H. W.
Blanch
, “
Bubble coalescence and break-up in air-sparged bubble columns
,”
AIChE J.
36
,
1485
(
1990
).
39.
P. M.
Carrica
,
R. V.
Wilson
,
R. W.
Noack
, and
F.
Stern
, “
Ship motions using single-phase level set with dynamic overset grids
,”
Comput. Fluids
36
,
1415
(
2007
).
40.
P. M.
Carrica
,
R. V.
Wilson
, and
F.
Stern
, “
An unsteady single-phase level set method for viscous free surface flows
,”
Int. J. Numer. Meth. Fluids
53
,
229
(
2007
).
41.
D.
Kim
,
Y.
Kim
,
J.
Li
,
R. V.
Wilson
,
J. E.
Martin
, and
P. M.
Carrica
, “
Boundary layer transition models for naval applications: Capabilities and limitations
,”
J. Ship Res.
63
,
294
(
2019
).
42.
J.
Li
and
P. M.
Carrica
, “
An approach to couple velocity/pressure/void fraction in two-phase flows with incompressible liquid and compressible bubbles
,”
Int. J. Multiphase Flow
102
,
77
(
2018
).
43.
S.
Balay
,
S.
Abhyankar
,
M. F.
Adams
,
S.
Benson
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
E.
Constantinescu
,
L.
Dalcin
,
A.
Dener
,
V.
Eijkhout
,
J.
Faibussowitsch
,
W. D.
Gropp
,
V.
Hapla
,
T.
Isaac
,
P.
Jolivet
,
D.
Karpeev
,
D.
Kaushik
,
M. G.
Knepley
,
F.
Kong
,
S.
Kruger
,
D. A.
May
,
L. C.
McInnes
,
R. T.
Mills
,
L.
Mitchell
,
T.
Munson
,
J. E.
Roman
,
K.
Rupp
,
P.
Sanan
,
J.
Sarich
,
B. F.
Smith
,
S.
Zampini
,
H.
Zhang
,
H.
Zhang
, and
J.
Zhang
, “
PETSc/TAO users manual, Revision 3.19
,”
Technical Report No. ANL-21/39
(
Argonne National Laboratory
,
2023
).
44.
K.
Agarwal
,
O.
Ram
,
J.
Wang
,
Y.
Lu
, and
J.
Katz
, “
Measuring the 3D pressure field and relating it to cavitation inception in a turbulent shear layer
,” in
33rd Symposium on Naval Hydrodynamics
, Osaka, Japan,
2020
.
45.
C. E.
Brennen
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
Cambridge
,
2005
).
46.
J.-P.
Franc
and
J.-M.
Michel
,
Fundamentals of Cavitation
(
Kluwer Academic Publishers
,
Dordrecht/Boston
,
2004
).
47.
A.
Gnanaskandan
and
K.
Mahesh
, “
Large Eddy Simulation of the transition from sheet to cloud cavitation over a wedge
,”
Int. J. Multiphase Flow
83
,
86
(
2016
).
48.
J.
Li
,
B.
Yuan
, and
P. M.
Carrica
, “
Modeling bubble entrainment and transport for ship wakes: Progress using hybrid RANS/LES methods
,”
J. Ship Res.
64
,
328
(
2020
).

Supplementary Material

You do not currently have access to this content.