The bubble size distribution (BSD) in hydrodynamic cloud cavitation is poorly understood, in spite of its importance in cavitation erosion and noise. Challenges arise owing to the heterogeneous turbulent flows and high void fraction in the cavitation regime. The use of a fiber optical probe enables us to obtain the BSD in a cavitation cloud. Two distinct power law scalings at the early stage of cloud cavitation are identified. The first generation of bubbles is produced by the fission to the shedding cavitation pocket by large-scale turbulence, whose isotropic part leads to the basic scaling 10 / 3, while the anisotropic part due to the effect of hydrofoil wall contributes to the deviation. The successive fragmentation of bubbles accompanied with turbulent energy cascade results in the fairly uniform scaling 4 / 3. The results indicate that turbulence plays a dominant role in bubble breakup at the early stage of cloud cavitation.

1.
W.
Melville
, “
The role of surface-wave breaking in air-sea interaction
,”
Annu. Rev. Fluid. Mech.
28
,
279
321
(
1996
).
2.
G.
Deane
and
M.
Stokes
, “
Scale dependence of bubble creation mechanisms in breaking waves
,”
Nature
418
,
839
844
(
2002
).
3.
L.
Deike
, “
Mass transfer at the ocean–atmosphere interface: The role of wave breaking, droplets, and bubbles
,”
Annu. Rev. Fluid Mech.
54
,
191
224
(
2022
).
4.
H.
Chanson
, “
Hydraulic jumps: Turbulence and air bubble entrainment
,”
Houille Blanche
97
,
5
(
2011
).
5.
M.
Kramer
and
D.
Valero
, “
Turbulence and self-similarity in highly aerated shear flows: The stable hydraulic jump
,”
Int. J. Multiphase Flows
129
,
103316
(
2020
).
6.
I.
Marusic
and
S.
Broomhall
, “
Leonardo da Vince and fluid mechanics
,”
Annu. Rev. Fluid Mech.
53
,
1
25
(
2021
).
7.
T.
Waniewski
,
C.
Brennen
, and
F.
Raichlen
, “
Measurements of air entrainment by bow waves
,”
J. Fluids Eng.
123
,
57
63
(
2001
).
8.
R.
Arndt
, “
Cavitation in vortical flows
,”
Annu. Rev. Fluid Mech.
34
,
143
175
(
2002
).
9.
S.
Ceccio
, “
Friction drag reduction of external flows with bubble and gas injection
,”
Annu. Rev. Fluid Mech.
42
,
183
203
(
2010
).
10.
G.
Kapsenberg
, “
Slamming of ships: Where we are now?
, ”
Philos. Trans. R. Soc. A
369
,
2892
2919
(
2011
).
11.
R.
Verschoof
,
R.
van der Veen
,
C.
Sun
, and
D.
Lohse
, “
Bubble drag reduction requires large bubbles
,”
Phys. Rev. Lett.
117
,
104502
(
2016
).
12.
F.
Dias
and
J.
Ghidaglia
, “
Slamming: Recent progress in the evaluation of impact pressures
,”
Annu. Rev. Fluid Mech.
50
,
243
273
(
2018
).
13.
J.
Hinze
, “
Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes
,”
AIChE J.
1
,
289
295
(
1955
).
14.
X.
Yu
,
K.
Hendrickson
, and
D.
Yue
, “
Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence
,”
J. Fluid Mech.
885
,
R2
(
2020
).
15.
P. A.
Brandner
,
G. J.
Walker
,
P. N.
Niekamp
, and
B.
Anderson
, “
An experimental investigation of cloud cavitation about a sphere
,”
J. Fluid Mech.
656
,
147
176
(
2010
).
16.
K.
Croci
,
F.
Ravelet
,
A.
Danlos
,
J.-C.
Robinet
, and
L.
Barast
, “
Attached cavitation in laminar separations within a transition to unsteadiness
,”
Phys. Fluids
31
,
063605
(
2019
).
17.
S. M.
Smith
,
J. A.
Venning
,
B. W.
Pearce
,
Y. L.
Young
, and
P. A.
Brandner
, “
The influence of fluid-structure interaction on cloud cavitation about a stiff hydrofoil. Part 1
,”
J. Fluid Mech.
896
,
A1
(
2020
).
18.
J.-B.
Leroux
,
O.
Courtier-Delgosha
, and
J. A.
Astolfi
, “
A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil
,”
Phys. Fluids
17
,
052101
(
2005
).
19.
T.
Du
,
Y.
Wang
,
L.
Liao
, and
C.
Huang
, “
A numerical model for the evolution of internal structure of cavitation cloud
,”
Phys. Fluids
28
,
077103
(
2016
).
20.
J.
Šukys
,
U.
Rasthofer
,
F.
Wermelinger
,
P.
Hadjidoukas
, and
P.
Koumoutsakos
, “
Multilevel control variables for uncertainty quantification in simulations of cloud cavitation
,”
SIAM J. Sci. Comput.
40
,
B1361
B1390
(
2018
).
21.
A.
Innocenti
,
A.
Jaccod
,
S.
Popinet
, and
S.
Chibbaro
, “
Direct numerical simulation of bubble-induced turbulence
,”
J. Fluid Mech.
918
,
A23
(
2021
).
22.
C.
Lai
and
S.
Socolofsky
, “
The turbulent kinetic energy budget in a bubble plume
,”
J. Fluid Mech.
865
,
993
1041
(
2019
).
23.
H.
Kato
,
H.
Yamaguchi
,
M.
Maeda
,
Y.
Kawanami
, and
S.
Nakasumi
, “
Laser holographic observation of cavitation cloud on a foil section
,”
J. Visualization
2
,
37
50
(
1999
).
24.
A.
Iafrati
, “
Energy dissipation mechanisms in wave breaking processes: Spilling and highly aerated plunging breaking events
,”
J. Geophys. Res.
116
,
C07024
, https://doi.org/10.1029/2011JC007038 (
2011
).
25.
X.
Yu
,
K.
Hendrickson
,
B. K.
Campbell
, and
D. K. P.
Yue
, “
Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers
,”
J. Fluid Mech.
880
,
209
238
(
2019
).
26.
H.
Zhang
,
Y.
Liu
, and
B.
Wang
, “
Spatial-temporal features of the coherent structure of sheet/cloud cavitation flows using a frequency-weighted dynamic mode decomposition approach
,”
Phys. Fluids
33
,
053317
(
2021
).
27.
G.
Rojas
and
M.
Loewen
, “
Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves
,”
Exp. Fluids
43
,
895
906
(
2007
).
28.
C.
Blenkinsopp
and
J.
Chaplin
, “
Bubble size measurements in breaking waves using optical fiber phase probes
,”
IEEE J. Ocean Eng.
35
,
388
401
(
2010
).
29.
T. H.
van den Berg
,
W. D.
Wormgoor
,
S.
Luther
, and
D.
Lohse
, “
Phase-sensitive constant temperature anemometry
,”
Macro Mol. Mater. Eng.
296
,
230
237
(
2011
).
30.
H.
Zhang
,
Y.
Liu
,
B.
Wang
, and
X.
Cheng
, “
Phase-resolved characteristics of bubbles in cloud cavitation shedding cycles
,”
Ocean Eng.
256
,
111529
(
2022
).
31.
O.
Coutier-Delgosha
,
J.
Devillers
,
T.
Pichon
,
A.
Vabre
,
R.
Woo
, and
S.
Legoupil
, “
Internal structure and dynamics of sheet cavitation
,”
Phys. Fluids
18
,
017103
(
2006
).
32.
S. G.
Dias
,
F. A.
Franca
, and
E. S.
Rosa
, “
Statistical method to calculate local interfacial variables in two-phase bubbly flows using intrusive crossing probes
,”
Int. J. Multiphase Flow
26
,
1797
1830
(
2000
).
33.
M.
Rüdisüli
,
T.
Schildhauer
, and
R.
von Ommen
, “
Monte Carlo simulation of the bubble size distribution in a fluidized bed with intrusive probes
,”
Int. J. Multiphase Flow
44
,
1
14
(
2012
).
34.
N.
Hoang
,
D.
Euh
,
B.
Yun
, and
C.-H.
Song
, “
A new method of relating a chord length distribution to a bubble size distribution for vertical bubbly flows
,”
Int. J. Multiphase Flow
71
,
23
31
(
2015
).
35.
W.
Liu
and
N. N.
Clark
, “
Relationships between distributions of chord lengths and distributions of bubble sizes including their statistical parameters
,”
Int. J. Multiphase Flow
21
,
1073
1089
(
1995
).
36.
C. D.
Serdula
and
M. R.
Loewen
, “
Experiments investigating the use of fiber-optic probes for measuring bubble-size distributions
,”
IEEE J. Ocean Eng.
23
,
385
399
(
1998
).
37.
N.
Mori
,
T.
Suzuki
, and
S.
Kakuno
, “
Experimental study of air bubbles and turbulence characteristics in the surf zone
,”
J. Geophys. Res.
112
,
C05014
, https://doi.org/10.1029/2006JC003647 (
2007
).
38.
A. U. K.
Masuk
,
A. K. R.
Salibindla
, and
R.
Ni
, “
Simultaneous measurements of deforming Hinze-scale bubbles with surrounding turbulence
,”
J. Fluid Mech.
910
,
A21
(
2021
).
39.
A.
Rivière
,
W.
Mostert
,
S.
Perrard
, and
L.
Deike
, “
Sub-Hinze scale bubble production in turbulent bubble break-up
,”
J. Fluid Mech.
917
,
A40
(
2021
).
40.
H.
Zhang
,
Y.
Liu
, and
B.
Wang
, “
Large eddy simulation on the flow structure in cloud cavitation regime
,” (unpublished).
41.
M.
Perret
and
P. M.
Carrica
, “
Bubble-wall interaction and two-phase flow parameters on a full-scale boat boundary layer
,”
Int. J. Multiphase Flows
73
,
289
308
(
2015
).
42.
C.
Garrett
,
M.
Li
, and
D.
Farmer
, “
The connection between bubble size spectra and energy dissipation rates in the upper ocean
,”
J. Phys. Oceanogr.
30
,
2163
2171
(
2000
).
43.
D.
de Lange
and
G.
de Bruin
, “
Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality
,”
Appl. Sci. Res.
58
,
91
114
(
1997
).
44.
W.
Chan
,
P.
Johnson
, and
P.
Moin
, “
The turbulent bubble break-up cascade. Part 1. Theoretical developments
,”
J. Fluid Mech.
912
,
A42
(
2021
).
45.
J. E.
Julia
,
W. K.
Harteveld
, and
H. E. A.
Van den Akker
, “
On the accuracy of the void fraction measurements using optical probes in bubbly flows
,”
Rev. Sci. Instrum.
76
,
035103
(
2005
).
46.
D.
van Gils
,
D.
Guzman
,
C.
Sun
, and
D.
Lohse
, “
The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow
,”
J. Fluid Mech.
722
,
317
347
(
2013
).
47.
Y.
Chen
,
X.
Chen
,
Z.
Gong
,
J.
Li
, and
C.
Lu
, “
Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil
,”
Appl. Math. Modell.
40
,
5835
5857
(
2016
).
48.
C.
Wan
,
B.
Wang
,
Q.
Wang
,
Y.
Fang
,
H.
Liu
,
G.
Zhang
,
L.
Xu
, and
X.
Peng
, “
Probing and imaging of vapor-water mixture properties inside partial/cloud cavitating flows
,”
J. Fluids Eng.
139
,
031303
(
2017
).
49.
U.
Rasthofer
,
F.
Wermelinger
,
P.
Karnakov
,
J.
Šukys
, and
P.
Koumoutsakos
, “
Computational study of the collapse of a cloud with 12 500 gas bubbles in a liquid
,”
Phys. Rev. Fluids
4
,
063602
(
2019
).
50.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
51.
M.
Morgut
,
E.
Nobile
, and
I.
Biluš
, “
Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil
,”
Int. J. Multiphase Flows
37
,
620
626
(
2011
).
52.
O.
Coutier-Delgosha
,
B.
Stutz
,
A.
Vabre
, and
S.
Legoupil
, “
Analysis of cavitating flow structure by experimental and numerical investigations
,”
J. Fluid Mech.
578
,
171
222
(
2007
).
53.
H.
Ganesh
,
S. A.
Mäkilharju
, and
S. L.
Ceccio
, “
Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
,”
J. Fluid Mech.
802
,
37
78
(
2016
).
54.
J.
Wu
,
H.
Ganesh
, and
S.
Ceccio
, “
Multimodal partial cavity shedding on a two-dimensional hydrofoil and its relation to the presence of bubbly shocks
,”
Exp. Fluids
60
,
66
(
2019
).
You do not currently have access to this content.