We report the design of a multipass microrheometer that can be fully customizable at a low cost and reasonable time, which allows us to perform experiments rapidly and in a broad range of shear rates (i.e., from 0.1 to 100 s−1), using small amounts of material (i.e., just some milligrams). Additionally, the low-cost approach opens for an easy parallelization of the setup that makes it suitable for high-throughput rheological experimentation of polymer melts (HT-Rheo-E). The novel rheometer consists of a microchannel (i.e., a microcapillary or a microslit) in which the fluid flows driven by two controlled millimetric pistons (diameter of 2 mm). Two piezoelectric miniaturized pressure sensors are placed at the microchannel entrance and exit to record the pressure drop across the capillary during the motion. The current work reports the design of the rheometer with two different cross sections of the microchannel, i.e., circular and rectangular, and measurements of the shear viscosity with a Newtonian and a non-Newtonian polymer over a wide range of shear rates using less than 1 g of sample. We demonstrate that the current multipass microrheometer can measure viscoelastic properties of polymers by applying an oscillatory flow. The printed setup is of potential interest for applications in quality control in industrial production, in natural systems (such as starch-based mixtures) and academic research where rapid and repeated measurements using limited milligrams of polymer are required (e.g., biological systems).

1.
E.
Pulatsu
and
C.
Udenigwe
, “
Perspectives, analyses, and progress in additive manufacturing of food
,”
Phys. Fluids
35
,
031303
(
2023
).
2.
S.
De Rosa
,
D.
Tammaro
, and
G.
D'Avino
, “
Experimental and numerical investigation of the die swell in 3D printing processes
,”
Micromachines
14
(
2
),
329
(
2023
).
3.
D.
Tammaro
,
R.
Della Gatta
,
M. M.
Villone
, and
P. L.
Maffettone
, “
Continuous 3D printing of hierarchically structured microfoamed objects
,”
Adv. Eng. Mater.
24
(
5
),
2101226
(
2022
).
4.
E. D.
Herderick
, “
Accelerating the additive revolution
,”
JOM
69
(
3
),
437
438
(
2017
).
5.
J. C.
Zambrano
and
T. A.
Vilgis
, “
Tunable oleosome-based oleogels: Effect of polysaccharide architecture on polymer bridging-based structuring
,”
Phys. Fluids
35
(
2
),
027131
(
2023
).
6.
R.
Velu
,
V.
Nahaad
,
K.
Murali
, and
F.
Raspall
, “
Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): A critical perspective to support automated fibre placement process
,”
Int. J. Adv. Manuf. Technol.
108
,
1007
1025
(
2020
).
7.
Z.
Zong
,
X.
Li
, and
P.
Sanaei
, “
Effects of nutrient depletion on tissue growth in a tissue engineering scaffold pore
,”
Phys. Fluids
33
(
12
),
121903
(
2021
).
8.
M. T.
Hossain
and
R. H.
Ewoldt
, “
Do-it-yourself rheometry
,”
Phys. Fluids
34
(
5
),
053105
(
2022
).
9.
D.
Tammaro
, “
Rheological characterization of complex fluids through a table-top 3D printer
,”
Rheol. Acta
61
(
10
),
761
772
(
2022
).
10.
D. A.
Bikos
and
T. G.
Mason
, “
Customizable tool geometries by additive manufacturing for mechanical rheometry of soft matter
,”
J. Rheol.
60
,
1257
1267
(
2016
).
11.
S.
Raayai
, “
Geometry mediated drag reduction using riblets and wrinkled surface textures
,” Ph.D. thesis (
MIT
,
Boston, MA
,
2018
).
12.
D.
Tammaro
,
L.
Lombardi
,
G.
Scherillo
,
E.
Di Maio
,
N.
Ahuja
, and
G.
Mensitieri
, “
Modelling sorption thermodynamics and mass transport of n-hexane in a propylene-ethylene elastomer
,”
Polymers
13
(
7
),
1157
(
2021
).
13.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials methods, applications and challenges
,”
Composites, Part B
143
,
172
196
(
2018
).
14.
C. E.
Owens
,
A. J.
Hart
, and
G. H.
McKinley
, “
Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes
,”
J. Rheol.
64
(
3
),
643
662
(
2020
).
15.
M. R.
Mackley
and
D. G.
Hassell
, “
The multipass rheometer a review
,”
J. Non-Newtonian Fluid Mech.
166
(
9–10
),
421
456
(
2011
).
16.
S.
Tajuddin
,
F.
Xie
,
T. M.
Nicholson
,
P.
Liu
, and
P. J.
Halley
, “
Rheological properties of thermoplastic starch studied by multipass rheometer
,”
Carbohydr. Polym.
83
(
2
),
914
919
(
2011
).
17.
D.
Tammaro
,
M. M.
Villone
, and
P. L.
Maffettone
, “
Microfoamed strands by 3D foam printing
,”
Polymers
14
(
15
),
3214
(
2022
).
18.
L.
Lombardi
and
D.
Tammaro
, “
Effect of polymer swell in extrusion foaming of low-density polyethylene
,”
Phys. Fluids
33
(
3
),
033104
(
2021
).
19.
Y. Z.
Sinzato
and
F. R.
Cunha
, “
Capillary flow of magnetic fluids with effect of hydrodynamic dispersion
,”
Phys. Fluids
33
(
10
),
102006
(
2021
).
20.
B. P.
Sutliff
,
A.
Das
,
J.
Youngblood
, and
M. J.
Bortner
, “
High shear capillary rheometry of cellulose nanocrystals for industrially relevant processing
,”
Carbohydr. Polym.
231
,
115735
(
2020
).
21.
B.
Xia
and
P. S.
Krueger
, “
Rheology of particulate suspensions with non-Newtonian fluids in capillaries
,”
Proc. R. Soc. A
478
(
2262
),
20210615
(
2022
).
22.
D.
Tammaro
,
G.
D'Avino
,
S.
Costanzo
,
E.
Di Maio
,
N.
Grizzuti
, and
P. L.
Maffettone
, “
A microcapillary rheometer for microliter sized polymer characterization
,”
Polym. Test.
102
,
107332
(
2021
).
23.
Y.
Son
, “
Development of a pressure-driven micro-rheometer
,”
Polym. Test.
27
,
243
453
(
2008
).
24.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
John Wiley VCH
,
1994
).
25.
J. M.
Broadbent
,
A.
Kaye
,
A. S.
Lodge
, and
D. G.
Vale
, “
Possible systematic error in the measurement of normal stress differences in polymer solutions in steady shear flow
,”
Nature
217
,
55
56
(
1968
).
26.
A.
Sorrentino
and
R.
Pantani
, “
Pressure-dependent viscosity and free volume of atactic and syndiotactic polystyrene
,”
Rheol. Acta
48
,
467
478
(
2009
).
27.
A.
Costa
and
G.
Macedonio
, “
Viscous heating effects in fluids with temperature-dependent viscosity: Triggering of secondary flows
,”
J. Fluid Mech.
540
,
21
38
(
2005
).
28.
K.
Osaki
,
M.
Fukuda
, and
M.
Kurata
, “
Relaxation spectra of concentrated polystyrene solutions
,”
J. Polym. Sci.
13
,
775
786
(
1975
).
29.
Y.
Cui
,
C.
Li
,
Y.
Guo
,
X.
Liu
,
F.
Zhu
,
Z.
Liu
,
X.
Liu
, and
F.
Yang
, “
Rheological & 3D printing properties of potato starch composite gels
,”
J. Food Eng.
313
,
110756
(
2022
).
30.
P.
Guillot
and
A.
Colin
, “
Determination of the flow curve of complex fluids using the Rabinowitsch–Mooney equation in sensorless microrheometer
,”
Microfluid. Nanofluid.
17
,
605
611
(
2014
).
31.
H. H.
Winter
, “
Three views of viscoelasticity for Cox–Merz materials
,”
Rheol. Acta
48
(
3
),
241
243
(
2009
).
32.
S.
Balakrishna
and
W. W.
Schultz
, “
Improved capillary rheometry for viscous Newtonian filaments
,”
Phys. Fluids
34
,
042101
(
2022
).
You do not currently have access to this content.