On a daily basis, we stir tea or coffee with a spoon and leave it to rest. We know empirically the larger the stickiness, viscosity, of the fluid, the more rapidly its velocity slows down. It is surprising, therefore, that the variation, the decay rate of the velocity, has not been utilized for measuring (kinematic) viscosity of fluids. This study shows that a spectroscopy decomposing a velocity field into fluid modes (Stokes eigenmodes) allows us to accurately measure the kinematic viscosity. The method, fluid mode spectroscopy (FMS), is based on the fact that each Stokes eigenmode has its inherent decay rate of eigenvalue, and the dimensionless rate of the slowest decaying mode is constant, dependent only on the normalized shape of a fluid container, obtained analytically for some shapes including cylindrical containers. The FMS supplements major conventional measuring methods with each other, which is particularly useful for measuring relatively low kinematic viscosity and for a direct measurement of viscosity at zero shear rate without extrapolation. The method is validated by the experiments of water poured into an open cylindrical container, as well as by the corresponding numerical simulations.

1.
Rheology: Encyclopaedia of Life Support Systems
, edited by
C.
Gallegos
(
Eolss Publishers
,
2010
), Vol.
1
, pp.
74
95
.
2.
C. L. M. H.
Navier
, “Mémoire sur les lois du mouvement des fluides,”
Mem. Acad. Sci. Inst. France
6
,
389
(
1822
).
3.
G. G.
Stokes
, “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids,”
Trans. Cambridge Phil. Soc.
8
,
287
(
1845
).
4.
E.
Hagenbach
, “
Ueber die bestimmung der zähigkeit einer flüssigkeit durch den ausfluss aus röhren
,”
Poggendorff's Ann.
185
,
385
(
1860
).
5.
S. P.
Sutera
and
R.
Skalak
, “
The history of Poiseuille's law
,”
Annu. Rev. Fluid Mech.
25
(
1
),
1
(
1993
).
6.
S. W.
Holman
, “
XII. A new method of studying the relation between the viscosity and temperature of gases
,”
London, Edinburgh Philos. Mag. J. Sci.
3
,
81
(
1877
).
7.
S. W.
Holman
, “
XXIX. On the effect of temperature on the viscosity of air and carbon dioxide
,”
London, Edinburgh Philos. Mag. J. Sci.
21
,
199
(
1886
).
8.
W.
Ostwald
,
Manual of Physico-Chemical Measurements
(
Macmillan and Company
,
1894
), pp.
162
168
.
9.
A. E.
Flowers
,
Viscosity Measurement and a New Viscosimeter
(
Cornell University
,
1914
).
10.
M.
Kawada
,
Viscosity
, Measurement Control Techniques Library Vol.
1
(
CORONA Publishing, Co. Ltd.
,
1958
) (in Japanese).
11.
S.
Gupta
,
Viscometry for Liquids
, Springer Series in Materials Science Vol.
194
(
Springer
,
2014
).
12.
E.
Lee
,
B.
Kim
, and
S.
Choi
, “
Hand-held, automatic capillary viscometer for analysis of Newtonian and non-Newtonian fluids
,”
Sens. Actuator A-Phys.
313
,
112176
(
2020
).
13.
Z. F.
Zhang
, “
Accuracy improvement of the experiment determining macromolecular weight by capillary viscometer based on Monte Carlo simulation
,”
Euro. J. Phys.
41
,
065803
(
2020
).
14.
I.
Akhlis
,
M.
Syaifurrozaq
,
P.
Marwoto
,
R.
Iswari
et al, “
The determination of fluid viscosity using tracker-assisted falling ball viscosimeter
,”
J. Phys.: Conf. Ser.
1567
,
042102
(
2020
).
15.
R.
Biswas
,
D.
Saha
, and
R.
Bandyopadhyay
, “
Quantifying the destructuring of a thixotropic colloidal suspension using falling ball viscometry
,”
Phys. Fluids
33
,
013103
(
2021
).
16.
Y.
Wang
,
Z.
Liu
,
L.
Cao
,
B.
Blanpain
, and
M.
Guo
, “
Simulation of particle migration during viscosity measurement of solid-bearing slag using a spindle rotational type viscometer
,”
Chem. Eng. Sci.
207
,
172
(
2019
).
17.
H. J.
Skadsem
and
A.
Saasen
, “
Concentric cylinder viscometer flows of Herschel-Bulkley fluids
,”
Appl. Rheol.
29
,
173
(
2019
).
18.
Z.
Song
,
L.
Zhang
, and
H.
Ban
, “
Theoretical foundation of electromagnetically-driven oscillating cup viscometer
,”
Meas. Sci. Technol.
30
,
115903
(
2019
).
19.
I.
Elyukhina
and
A.
Vikhansky
, “
On the secondary flows in oscillating-cup viscometer
,”
Measurement
206
,
112267
(
2023
).
20.
E.
Leriche
,
P.
Lallemand
, and
G.
Labrosse
, “
Stokes eigenmodes in cubic domain: Primitive variable and Lattice Boltzmann formulations
,”
Appl. Numer. Math.
58
,
935
(
2008
).
21.
G.
Labrosse
,
E.
Leriche
, and
P.
Lallemand
, “
Stokes eigenmodes in cubic domain: Their symmetry properties
,”
Theor. Comput. Fluid Dyn.
28
,
335
(
2014
).
22.
A.
Migliori
,
J.
Sarrao
,
W. M.
Visscher
,
T.
Bell
,
M.
Lei
,
Z.
Fisk
, and
R.
Leisure
, “
Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids
,”
Physica B
183
,
1
(
1993
).
23.
H.
Ogi
,
H.
Ledbetter
,
S.
Kim
, and
M.
Hirao
, “
Contactless mode-selective resonance ultrasound spectroscopy: Electromagnetic acoustic resonance
,”
J. Acoust. Soc. Am.
106
,
660
(
1999
).
24.
H.
Ogi
,
T.
Ishihara
,
H.
Ishida
,
A.
Nagakubo
,
N.
Nakamura
, and
M.
Hirao
, “
Thermal mode spectroscopy for thermal diffusivity of millimeter-size solids
,”
Phys. Rev. Lett.
117
,
195901
(
2016
).
25.
H.
Ishida
and
H.
Ogi
, “
Perturbation theories behind thermal mode spectroscopy for high-accuracy measurement of thermal diffusivity of solids
,”
Philos. Mag.
98
,
2164
(
2018
).
26.
A.
Miranda-Martínez
,
M. X.
Rivera-González
,
M.
Zeinoun
,
L. A.
Carvajal-Ahumada
, and
J. J.
Serrano-Olmedo
, “
Viscosity measurement sensor: A prototype for a novel medical diagnostic method based on quartz crystal resonator
,”
Sensors
21
,
2743
(
2021
).
27.
E. E.
Franco
and
F.
Buiochi
, “
Ultrasonic measurement of viscosity: Signal processing methodologies
,”
Ultrasonics
91
,
213
(
2019
).
28.
T.
Yoshida
,
K.
Ohie
, and
Y.
Tasaka
, “
In situ measurement of instantaneous viscosity curve of fluids in a reserve tank
,”
Ind. Eng. Chem. Res.
61
,
11579
(
2022
).
29.
W.
Zeng
and
H.
Fu
, “Measurement of fluid viscosity based on droplet microfluidics,”
Phys. Fluids
32
,
042002
(
2020
).
30.
G.
Lohöfer
, “
Viscosity measurement by the ‘oscillating drop method’: The case of strongly damped oscillations
,”
Int. J. Thermophys.
41
,
30
(
2020
).
31.
A.
Savenkov
,
M.
Mordasov
, and
V.
Sychev
, “
Contactless pneumoelectric fluid viscosity measurement device
,”
Meas. Tech.
63
,
722
(
2020
).
32.
L. S.
Madsen
,
M.
Waleed
,
C. A.
Casacio
,
A.
Terrasson
,
A. B.
Stilgoe
,
M. A.
Taylor
, and
W. P.
Bowen
, “
Ultrafast viscosity measurement with ballistic optical tweezers
,”
Nat. Photonics
15
,
386
(
2021
).
33.
P.
Koštál
,
T.
Hofírek
, and
J.
Málek
, “
Viscosity measurement by thermomechanical analyzer
,”
J. Non-Cryst. Solids
480
,
118
(
2018
).
34.
O.
Takeda
,
M.
Yamada
,
M.
Kawasaki
,
M.
Yamamoto
,
S.
Sakurai
,
X.
Lu
, and
H.
Zhu
, “
Development of wide-range viscometer and the viscosity measurement for SiO2–Na2O–NaF system
,”
ISIJ Int.
60
,
590
(
2020
).
35.
J.
Kremer
,
A.
Kilzer
, and
M.
Petermann
, “
Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets
,”
Rev. Sci. Instrum.
89
,
015109
(
2018
).
36.
M. I.
Pryazhnikov
,
A. S.
Yakimov
,
I. A.
Denisov
,
A. I.
Pryazhnikov
,
A. V.
Minakov
, and
P. I.
Belobrov
, “
Fluid viscosity measurement by means of secondary flow in a curved channel
,”
Micromachines
13
,
1452
(
2022
).
37.
J.
Kestin
,
M.
Sokolov
, and
W. A.
Wakeham
, “
Viscosity of liquid water in the range −8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
7
,
941
(
1978
).
38.
JIS Z 8803:2011
, “
Methods for viscosity measurement of liquid
,” Technical Report (
Japanese Industrial Standards Association
,
2011
).
39.
R. A.
Ibrahim
,
Liquid Sloshing Dynamics: Theory and Applications
(
Cambridge University Press
,
2005
).
You do not currently have access to this content.