This work investigates the possibility of obtaining the molecular weight distribution (MWD) of linear ultrahigh molecular weight (UHMW) polypropylene (PP) through rheology. To this end, the linear viscoelastic response of a set of UHMWPP samples is measured over the largest possible frequency range. The terminal relaxation is achieved by running creep experiments and converting the compliance in dynamic moduli. A time–temperature concentration principle, recently validated for UHMW polyethylene, is also applied to obtain the terminal relaxation of the sample with the largest molecular weight. The linear rheological response is correlated with gel permeation chromatography (GPC) results by means of the mixing rule based on the relaxation modulus. The implementation of such a rule requires the knowledge of some material parameters governing the stress relaxation of the polymer. Since they are unknown in literature for PP, they are estimated from the comparison between the viscoelastic spectra and the GPC distributions of three lab-made UHMWPPs with narrow polydispersity. Such parameters are then used as a basis to predict the MWDs of two UHMWPP samples with large polydispersity. The variability of the parameters upon molecular weight and polydispersity is assessed by applying the mixing rule to two different PP samples with lower molecular weights, one with narrow polydyspersity and another one with broad polydispersity. As the GPC curves of the samples are available, first the direct problem of estimating the rheological response from MWD and then the inverse problem of obtaining the MWD from the rheological data are solved. An overall satisfactory agreement is found between the calculated and measured MWD for the two samples, with both the direct and inverse approach.

1.
W.
Radke
, “
Polymer separations by liquid interaction chromatography: Principles–prospects–limitations
,”
J. Chromatography A
1335
,
62
79
(
2014
).
2.
A. M.
Striegel
,
W. W.
Yau
,
J. J.
Kirkland
, and
D. D.
Bly
,
Modern Size-Exclusion Liquid Chromatography
(
John Wiley & Sons, Inc.
,
2009
).
3.
M.
Al Samman
,
W.
Radke
,
A.
Khalyavina
, and
A.
Lederer
, “
Retention behavior of linear, branched, and hyperbranched polyesters in interaction liquid chromatography
,”
Macromolecules
43
,
3215
3220
(
2010
).
4.
E.
Viktorova
,
A.
Korolev
,
V.
Orekhov
,
A. Y.
Kanat'eva
, and
A.
Kurganov
, “
Separating ultra-high molecular weight polymers on monolithic capillary columns
,”
Russ. J. Phys. Chem. A
87
,
308
313
(
2013
).
5.
E.
Uliyanchenko
,
P. J.
Schoenmakers
, and
S.
Van der Wal
, “
Fast and efficient size-based separations of polymers using ultra-high-pressure liquid chromatography
,”
J. Chromatography A
1218
,
1509
1518
(
2011
).
6.
E.
Uliyanchenko
,
S.
van der Wal
, and
P. J.
Schoenmakers
, “
Challenges in polymer analysis by liquid chromatography
,”
Polym. Chem.
3
,
2313
2335
(
2012
).
7.
J. M.
Dealy
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Carl Hanser Verlag GmbH Co KG
,
2018
).
8.
S.
Talebi
,
R.
Duchateau
,
S.
Rastogi
,
J.
Kaschta
,
G. W. M.
Peters
, and
P. J.
Lemstra
, “
Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst
,”
Macromolecules
43
,
2780
2788
(
2010
).
9.
M.
Gahleitner
, “
Melt rheology of polyolefins
,”
Prog. polymer science
26
,
895
944
(
2001
).
10.
M.
Doi
and
S. F. E.
Edwards
,
The Theory of Polymer Dynamics
, Vol.
73
(
Oxford university Press
,
1988
).
11.
J. D.
Cloizeaux
, “
Double reptation vs. simple reptation in polymer melts
,”
Europhys. Lett.
5
,
437
(
1988
).
12.
C.
Tsenoglou
, “
Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers
,”
Macromolecules
24
,
1762
1767
(
1991
).
13.
C.
Tsenoglou
, “
Viscoelasticity of binary homopolymer blends
,” in
Abstracts of Papers of the American Chemical Society
(
AMER Chemical Soc.
,
1987
), Vol.
194
, p.
219
.
14.
S. T.
Milner
, “
Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts
,”
J. Rheol.
40
,
303
315
(
1996
).
15.
J.
Vega
,
S.
Rastogi
,
G.
Peters
, and
H.
Meijer
, “
Rheology and reptation of linear polymers. ultrahigh molecular weight chain dynamics in the melt
,”
J. Rheol.
48
,
663
678
(
2004
).
16.
V.
Ianniello
,
S.
Costanzo
,
R.
Pasquino
,
G.
Ianniruberto
,
E.
Troisi
,
T. A.
Tervoort
, and
N.
Grizzuti
, “
Determination of the molecular weight distribution of ultrahigh molecular weight polyethylene from solution rheology
,”
J. Rheol.
66
,
1079
1088
(
2022
).
17.
T.
Kida
,
T.
Kimura
,
A.
Eno
,
K.
Janchai
,
M.
Yamaguchi
,
Y.
Otsuki
,
T.
Kimura
,
T.
Mizukawa
,
T.
Murakami
,
K.
Hato
, and
T.
Okawa
, “
Effect of ultra-high-molecular-weight molecular chains on the morphology, crystallization, and mechanical properties of polypropylene
,”
Polymers
13
,
4222
(
2021
).
18.
W.
Spaleck
,
M.
Antberg
,
J.
Rohrmann
,
A.
Winter
,
B.
Bachmann
,
P.
Kiprof
,
J.
Behm
, and
W. A.
Herrmann
, “
High molecular weight polypropylene through specifically designezirconocene catalysts
,”
Angew. Chem. Int. Ed. English
31
,
1347
1350
(
1992
).
19.
W.
Spaleck
,
F.
Kueber
,
A.
Winter
,
J.
Rohrmann
,
B.
Bachmann
,
M.
Antberg
,
V.
Dolle
, and
E. F.
Paulus
, “
The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts
,”
Organometallics
13
,
954
963
(
1994
).
20.
A.
Schöbel
,
E.
Herdtweck
,
M.
Parkinson
, and
B.
Rieger
, “
Ultra-rigid metallocenes for highly iso- and regiospecific polymerization of propene: The search for the perfect polypropylene helix
,”
Chem.–A Eur. J.
18
,
4174
4178
(
2012
).
21.
L.
Stieglitz
,
T. M.
Lenz
,
A.
Saurwein
, and
B.
Rieger
, “
Perfectly isotactic polypropylene upon in situ activation of ultrarigid meso hafnocenes
,”
Angew. Chem. Int. Ed.
61
,
e202210797
(
2022
).
22.
M. R.
Machat
,
C.
Jandl
, and
B.
Rieger
, “
Titanocenes in olefin polymerization: Sustainable catalyst system or an extinct species?
,”
Organometallics
36
,
1408
1418
(
2017
).
23.
M. R.
Machat
,
D.
Lanzinger
,
A.
Pöthig
, and
B.
Rieger
, “
Ultrarigid indenyl-based hafnocene complexes for the highly isoselective polymerization of propene: Tunable polymerization performance adopting various sterically demanding 4-aryl substituents
,”
Organometallics
36
,
399
408
(
2017
).
24.
M. R.
Machat
,
A.
Fischer
,
D.
Schmitz
,
M.
Vöst
,
M.
Drees
,
C.
Jandl
,
A.
Pöthig
,
N. P.
Casati
,
W.
Scherer
, and
B.
Rieger
, “
Behind the scenes of group 4 metallocene catalysis: Examination of the metal–carbon bond
,”
Organometallics
37
,
2690
2705
(
2018
).
25.
P. S.
Kulyabin
,
G. P.
Goryunov
,
M. I.
Sharikov
,
V. V.
Izmer
,
A.
Vittoria
,
P. H.
Budzelaar
,
V.
Busico
,
A. Z.
Voskoboynikov
,
C.
Ehm
,
R.
Cipullo
, and
D.
Uborsky
, “
ansa-zirconocene catalysts for isotactic-selective propene polymerization at high temperature: A long story finds a happy ending
,”
J. Am. Chem. Soc.
143
,
7641
7647
(
2021
).
26.
A.
Eckstein
,
J.
Suhm
,
C.
Friedrich
,
R.-D.
Maier
,
J.
Sassmannshausen
,
M.
Bochmann
, and
R.
Mülhaupt
, “
Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts
,”
Macromolecules
31
,
1335
1340
(
1998
).
27.
F.
Leonardi
,
J.-C.
Majeste
,
A.
Allal
, and
G.
Marin
, “
Rheological models based on the double reptation mixing rule: The effects of a polydisperse environment
,”
J. Rheol.
44
,
675
692
(
2000
).
28.
S.
Edwards
, “
The theory of rubber elasticity
,”
British Polym. J.
9
,
140
143
(
1977
).
29.
W. W.
Graessley
, “
Some phenomenological consequences of the doi–edwards theory of viscoelasticity
,”
J. Polym. Sci.: Polym. Phys. Ed.
18
,
27
34
(
1980
).
30.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. part 1.—brownian motion in the equilibrium state
,”
J. Chem. Soc., Faraday transactions II
74
,
1789
1801
(
1978a
).
31.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. part 2.—molecular motion under flow
,”
J. Chem. Soc., Faraday transactions II
74
,
1802
1817
(
1978b
).
32.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. part 3.—the constitutive equation
,”
J. Chem. Soc., Faraday transactions II
74
,
1818
1832
(
1978c
).
33.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. part 4.—rheological properties
,”
J. Chem. Soc., Faraday transactions II
75
,
38
54
(
1979
).
34.
P. G.
de Gennes
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
35.
A. E.
Likhtman
,
S. T.
Milner
, and
T. C. B.
McLeish
, “
Microscopic theory for the fast flow of polymer melts
,”
Phys. Rev. Lett.
85
,
4550
4553
(
2000
).
36.
S. T.
Milner
,
T. C. B.
McLeish
, and
A. E.
Likhtman
, “
Microscopic theory of convective constraint release
,”
J. Rheol.
45
,
539
563
(
2001
).
37.
R. S.
Graham
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
38.
W. H.
Tuminello
, “
Molecular weight and molecular weight distribution from dynamic measurements of polymer melts
,”
Polym. Eng. Sci.
26
,
1339
1347
(
1986
).
39.
W. H.
Tuminello
, “
Determining molecular weight distributions from rheological properties of polymer melts
,”
Rheol. Bull.
69
,
8
14
(
2000
).
40.
M.
Baumgaertel
,
A.
Schausberger
, and
H.
Winter
, “
The relaxation of polymers with linear flexible chains of uniform length
,”
Rheol. Acta
29
,
400
408
(
1990
).
41.
J.
Des Cloizeaux
, “
Relaxation of entangled polymers in melts
,”
Macromolecules
23
,
3992
4006
(
1990
).
42.
J.
Des Cloizeaux
, “
Relaxation of entangled and partially entangled polymers in melts: Time-dependent reptation
,”
Macromolecules
25
,
835
841
(
1992
).
43.
E.
Van Ruymbeke
,
R.
Keunings
,
V.
Stéphenne
,
A.
Hagenaars
, and
C.
Bailly
, “
Evaluation of reptation models for predicting the linear viscoelastic properties of entangled linear polymers
,”
Macromolecules
35
,
2689
2699
(
2002
).
44.
J. W.
Park
,
J.
Yoon
,
J.
Cha
, and
H. S.
Lee
, “
Determination of molecular weight distribution and composition dependence of monomeric friction factors from the stress relaxation of ultrahigh molecular weight polyethylene gels
,”
J. Rheol.
59
,
1173
1189
(
2015
).
45.
M. R.
Nobile
and
F.
Cocchini
, “
Evaluation of molecular weight distribution from dynamic moduli
,”
Rheol. acta
40
,
111
119
(
2001
).
46.
E.
Van Ruymbeke
,
R.
Keunings
, and
C.
Bailly
, “
Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data
,”
J. non-newtonian fluid mechanics
105
,
153
175
(
2002
).
47.
A.
Dordinejad
,
F.
Sharif
,
M.
Ebrahimi
, and
R.
Rashedi
, “
Time-sweep rheometry for evaluating polyethylene degradation behavior: Effect of formulation and process conditions
,”
Polym. Testing
70
,
39
46
(
2018
).
48.
V.
Gupta
,
S.
Singh
,
J.
Joseph
,
K. J.
Singala
, and
B. K.
Desai
, “
Attrition resistant catalyst system for manufacture of polyolefins
,” U.S. Patent 9,605,089 (
2017
).
49.
B.
Coto
,
J. M.
Escola
,
I.
Suárez
, and
M. J.
Caballero
, “
Determination of dn/dc values for ethylene–propylene copolymers
,”
Polym. Testing
26
,
568
575
(
2007
).
50.
F.
Schwarzl
, “
Numerical calculation of storage and loss modulus from stress relaxation data for linear viscoelastic materials
,”
Rheol. Acta
10
,
165
173
(
1971
).
51.
B.
Duscher
and
A.
Schausberger
, “
Influence of processing on the flow properties of long-chain branched polypropylene
,”
Polym. Eng. Sci.
58
,
1596
1603
(
2018
).
52.
H.
Niu
,
Y.
Wang
,
X.
Liu
,
Y.
Wang
, and
Y.
Li
, “
Determination of plateau moduli and entanglement molecular weights of ultra-high molecular weight isotactic polypropylene synthesized by ziegler-natta catalyst
,”
Polym. Testing
60
,
260
265
(
2017
).
53.
C.
Liu
,
J.
He
,
E.
Van Ruymbeke
,
R.
Keunings
, and
C.
Bailly
, “
Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight
,”
Polym.
47
,
4461
4479
(
2006
).
54.
N.
Ahmad
,
R.
Di Girolamo
,
F.
Auriemma
,
C.
De Rosa
, and
N.
Grizzuti
, “
Relations between stereoregularity and melt viscoelasticity of syndiotactic polypropylene
,”
Macromolecules
46
,
7940
7946
(
2013
).
55.
E.
Van Ruymbeke
,
C.-Y.
Liu
, and
C.
Bailly
, “
Quantitative tube model predictions for the linear viscoelasticity of linear polymers
,”
Rheol. Rev.
39
,
53
134
(
2007
).
56.
K.
Chaudhuri
and
A. K.
Lele
, “
Rheological quantification of the extent of dissolution of ultrahigh molecular weight polyethylene in melt-compounded blends with high density polyethylene
,”
J. Rheol.
64
,
1
12
(
2020
).
57.
R.
Hingmann
and
B.
Marczinke
, “
Shear and elongational flow properties of polypropylene meltsa
,”
J. Rheol.
38
,
573
587
(
1994
).
58.
S.
Wu
, “
Chain structure and entanglement
,”
J. Polym. Sci. Part B: Polym. Phys.
27
,
723
741
(
1989
).
59.
S. S.
Bafna
, “
Is the cross-over modulus a reliable measure of polymeric polydispersity?
,”
J. Appl. Polymer Sci.
63
,
111
113
(
1997
).
60.
R.
Shroff
and
H.
Mavridis
, “
New measures of polydispersity from rheological data on polymer melts
,”
J. Appl. Polymer Sci.
57
,
1605
1626
(
1995
).
61.
M. R.
Nobile
and
F.
Cocchini
, “
Predictions of linear viscoelastic properties for polydisperse entangled polymers
,”
Rheol. Acta
39
,
152
162
(
2000
).
You do not currently have access to this content.