Active droplets are artificial microswimmers built from a liquid dispersion by microfluidic tools and showing self-propelled motion. These systems hold particular interest for mimicking biological phenomena, such as some aspects of cell locomotion and collective behaviors of bacterial colonies, as well as for the design of droplet-based biologically inspired materials, such as engineered tissues. Growing evidence suggests that geometrical confinement crucially affects their morphology and motility, but the driving physical mechanisms are still poorly understood. Here, we study the effect of activity on a droplet containing a contractile polar fluid confined within microfluidic channels of various sizes. We find a surprising wealth of shapes and dynamic regimes, whose mechanics is regulated by a subtle interplay between contractile stress, droplet elasticity, and microchannel width. They range from worm-like and cell-like shaped droplets displaying an oscillating behavior within wider channels to bullet-shaped droplets exhibiting rectilinear motion in narrower slits. Our findings support the view that geometrical confinement can provide a viable strategy to control and predict the propulsion direction of active droplets. It would be of interest to look for analogs of these motility modes in biological cells or in synthetic active matter.

1.
M. C.
Marchetti
,
J. F.
Joanny
,
T.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
2.
R. A.
Simha
and
S.
Ramaswamy
, “
Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles
,”
Phys. Rev. Lett.
89
,
058101
(
2002
).
3.
A.
Majumdar
,
M. C.
Marchetti
, and
E. G.
Virga
, “
Perspectives in active liquid crystals
,”
Philos. Trans. R. Soc., A
372
,
20130373
(
2014
).
4.
J.
Prost
,
F.
Jülicher
, and
J. F.
Joanny
, “
Active gel physics
,”
Nat. Phys.
11
,
111
117
(
2015
).
5.
D.
Dell'Arciprete
,
M. L.
Blow
,
A. T.
Brown
,
F. D. C.
Farrell
,
J. S.
Lintuvuori
,
A. F.
McVey
,
D.
Marenduzzo
, and
W. C. K.
Poon
, “
A growing bacterial colony in two dimensions as an active nematic
,”
Nat. Commun.
9
,
4190
(
2018
).
6.
M. E.
Cates
, “
Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics?
,”
Rep. Prog. Phys.
75
,
042601
(
2012
).
7.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
345
(
2010
).
8.
F.
Jülicher
,
K.
Kruse
,
J.
Prost
, and
J.-F.
Joanny
, “
Active behavior of the cytoskeleton
,”
Phys. Rep.
449
,
3
28
(
2007
).
9.
Y.
Sumino
,
K. H.
Nagai
,
Y.
Shitaka
,
K.
Yoshikawa
,
H.
Chaté
, and
K.
Oiwa
, “
Large-scale vortex lattice emerging from collectively moving microtubules
,”
Nature
483
,
448
452
(
2012
).
10.
F. J.
Surrey
,
T.
amd Nédélec
,
S.
Leibler
, and
E.
Karsenti
, “
Physical properties determining self-organization of motors and microtubules
,”
Science
292
,
1167
(
2001
).
11.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
, “
Spontaneous motion in hierarchically assembled active matter
,”
Nature
491
,
431
434
(
2012
).
12.
K.
Kruse
,
J.-F.
Joanny
,
F.
Jülicher
,
J.
Prost
, and
K.
Sekimoto
, “
Asters, vortices, and rotating spirals in active gels of polar filaments
,”
Phys. Rev. Lett.
92
,
078101
(
2004
).
13.
H. H.
Wensink
,
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
H.
Lowen
,
R. E.
Goldstein
, and
J. M.
Yeomans
, “
Meso-scale turbulence in living fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14308
14313
(
2012
).
14.
R.
Alert
,
J.
Casademunt
, and
J. F.
Joanny
, “
Active turbulence
,”
Annu. Rev. Condens. Matter Phys.
13
,
143
170
(
2022
).
15.
S. M.
Fielding
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Nonlinear dynamics and rheology of active fluids: Simulations in two dimensions
,”
Phys. Rev. E
83
,
041910
(
2011
).
16.
H. M.
López
,
J.
Gachelin
,
C.
Douarche
,
H.
Auradou
, and
E.
Clément
, “
Turning bacteria suspensions into superfluids
,”
Phys. Rev. Lett.
115
,
028301
(
2015
).
17.
D.
Saintillan
, “
Rheology of active fluids
,”
Annu. Rev. Fluid Mech.
50
,
563
592
(
2018
).
18.
J.
Ignés-Mullol
and
F.
Sagués
, “
Active, self-motile, and driven emulsions
,”
Curr. Opin. Colloid Interface Sci.
49
,
16
26
(
2020
).
19.
P.
Guillamat
,
Z.
Kos
,
J.
Hardoüin
,
J.
Ignés-Mullol
,
M.
Ravnik
, and
F.
Sagués
, “
Active nematic emulsions
,”
Sci. Adv.
4
,
eaao1470
(
2018
).
20.
R.
Sakamoto
,
Z.
Izri
,
Y.
Shimamoto
, and
Y. T.
Maeda
, “
Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2121147119
(
2022
).
21.
L.
Giomi
and
A.
DeSimone
, “
Spontaneous division and motility in active nematic droplets
,”
Phys. Rev. Lett.
112
,
147802
(
2014
).
22.
E.
Tjhung
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Spontaneous symmetry breaking in active droplets provides a generic route to motility
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
12381
12386
(
2012
).
23.
N.
Yoshinaga
, “
Spontaneous motion and deformation of a self-propelled droplet
,”
Phys. Rev. E
89
,
012913
(
2014
).
24.
E.
Tjhung
,
A.
Tiribocchi
,
D.
Marenduzzo
, and
M. E.
Cates
, “
A minimal physical model captures the shapes of crawling cells
,”
Nat. Commun.
6
,
5420
(
2015
).
25.
F.
Ziebert
and
I. S.
Aranson
, “
Computational approaches to substrate-based cell motility
,”
npj Comput. Mater.
2
,
16019
(
2016
).
26.
T. B.
Saw
,
A.
Doostmohammadi
,
V.
Nier
,
L.
Kocgozlu
,
S.
Thampi
,
Y.
Toyama
,
P.
Marcq
,
C. T.
Lim
,
J. M.
Yeomans
, and
B.
Ladoux
, “
Topological defects in epithelia govern cell death and extrusion
,”
Nature
544
,
212
216
(
2017
).
27.
L. A.
Hoffmann
,
L. N.
Carenza
,
J.
Eckert
, and
L.
Giomi
, “
Theory of defect-mediated morphogenesis
,”
Sci. Adv.
8
,
eabk2712
(
2022
).
28.
M.
Li
,
M.
Brinkmann
,
I.
Pagonabarraga
,
R.
Seemann
, and
J. P.
Fleury
, “
Spatiotemporal control of cargo delivery performed by programmable self-propelled Janus droplets
,”
Commun. Phys.
1
,
23
(
2018
).
29.
C.
Jin
,
Y.
Chen
,
C. C.
Maass
, and
A. J. T. M.
Mathijssen
, “
Collective entrainment and confinement amplify transport by schooling microswimmers
,”
Phys. Rev. Lett.
127
,
088006
(
2021
).
30.
J.
Wang
and
W.
Gao
, “
Nano/microscale motors: Biomedical opportunities and challenges
,”
ACS Nano
6
,
5745
5751
(
2012
).
31.
W.
Gao
and
J.
Wang
, “
The environmental impact of micro/nanomachines: A review
,”
ACS Nano
8
,
3170
3180
(
2014
).
32.
P. M.
Davidson
,
J.
Sliz
,
P.
Isermann
,
C.
Denais
, and
J.
Lammerding
, “
Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments
,”
Integr. Biol.
7
,
1534
1546
(
2015
).
33.
K. M.
Yamada
and
M.
Sixt
, “
Mechanisms of 3D cell migration
,”
Nat. Rev. Mol. Cell Biol.
20
,
738
752
(
2019
).
34.
B. V.
Hokmabad
,
K. A.
Baldwin
,
C.
Krüger
,
C.
Bahr
, and
C. C.
Maass
, “
Topological stabilization and dynamics of self-propelling nematic shells
,”
Phys. Rev. Lett.
123
,
178003
(
2019
).
35.
B. V.
Hokmabad
,
R.
Dey
,
M.
Jalaal
,
D.
Mohanty
,
M.
Almukambetova
,
K. A.
Baldwin
,
D.
Lohse
, and
C. C.
Maass
, “
Emergence of bimodal motility in active droplets
,”
Phys. Rev. X
11
,
011043
(
2021
).
36.
C.
de Blois
,
M.
Reyssat
,
S.
Michelin
, and
O.
Dauchot
, “
Flow field around a confined active droplet
,”
Phys. Rev. Fluids
4
,
054001
(
2019
).
37.
C.
Stamatopoulos
,
A.
Milionis
,
N.
Ackerl
,
M.
Donati
,
P. L.
de la Vallée
,
P. R.
von Rohr
, and
D.
Poulikakos
, “
Droplet self-propulsion on superhydrophobic microtracks
,”
ACS Nano
14
,
12895
12904
(
2020
).
38.
C.
de Blois
,
V.
Bertin
,
S.
Saori
,
M.
Ichikawa
,
M.
Reyssat
, and
O.
Dauchot
, “
Swimming droplet in 1D geometries: An active Bretherton problem
,”
Soft Matter
17
,
6646
6660
(
2021
).
39.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
40.
A.
Zöttl
and
H.
Stark
, “
Nonlinear dynamics of a microswimmer in Poiseuille flow
,”
Phys. Rev. Lett.
108
,
218104
(
2012
).
41.
B.
Liu
,
K. S.
Breuer
, and
T. R.
Powers
, “
Propulsion by a helical flagellum in a capillary tube
,”
Phys. Fluids
26
,
011701
(
2014
).
42.
A.
Acemoglu
and
S.
Yesilyurt
, “
Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels
,”
Biophys. J.
106
,
1537
1547
(
2014
).
43.
F.
Fadda
,
G.
Gonnella
,
A.
Lamura
, and
A.
Tiribocchi
, “
Lattice Boltzmann study of chemically-driven self-propelled droplets
,”
Eur. Phys. J. E
40
,
112
(
2017
).
44.
E.
Kanso
and
S.
Michelin
, “
Phoretic and hydrodynamic interactions of weakly confined autophoretic particles
,”
J. Chem. Phys.
150
,
044902
(
2019
).
45.
G.-J.
Li
and
A. M.
Ardekani
, “
Hydrodynamic interaction of microswimmers near a wall
,”
Phys. Rev. E
90
,
013010
(
2014
).
46.
J. S.
Lintuvuori
,
A. T.
Brown
,
K.
Stratford
, and
D.
Marenduzzo
, “
Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls
,”
Soft Matter
12
,
7959
7968
(
2016
).
47.
A.
Doostmohammadi
,
J.
Ignés-Mullol
,
J. M.
Yeomans
, and
F.
Sagués
, “
Active nematics
,”
Nat. Commun.
9
,
3246
(
2018
).
48.
M.
Foglino
,
A. N.
Morozov
,
O.
Henrich
, and
D.
Marenduzzo
, “
Flow of deformable droplets: Discontinuous shear thinning and velocity oscillations
,”
Phys. Rev. Lett.
119
,
208002
(
2017
).
49.
A.
Tiribocchi
,
A.
Montessori
,
M.
Lauricella
,
F.
Bonaccorso
,
S.
Succi
,
S.
Aime
,
M.
Milani
, and
D.
Weitz
, “
The vortex-drive dyanamics of droplets within droplets
,”
Nat. Commun.
12
,
82
(
2021
).
50.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
,
2nd ed.
(
Oxford University Press
,
1993
).
51.
M. C. T.
Calderer
and
E. M.
Terentjev
,
Modeling of Soft Matter
(
Springer
,
2005
).
52.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
267
(
1958
).
53.
A. J.
Bray
, “
Theory of phase-ordering kinetics
,”
Adv. Phys.
43
,
357
459
(
1994
).
54.
L. N.
Carenza
,
G.
Gonnella
,
A.
Lamura
,
G.
Negro
, and
A.
Tiribocchi
, “
Lattice Boltzmann methods and active fluids
,”
Eur. Phys. J. E
42
,
81
(
2019
).
55.
S.
Succi
,
The Lattice Boltzmann Equation: For Complex States of Flowing Matter
(
Oxford University Press
,
2018
).
56.
A.
Tiribocchi
,
N.
Stella
,
A.
Lamura
, and
G.
Gonnella
, “
Hybrid lattice Boltzmann model for binary fluid mixtures
,”
Phys. Rev. E
80
,
026701
(
2009
).
57.
S.
Thampi
,
S.
Ansumali
,
R.
Adhikari
, and
S.
Succi
, “
Isotropic discrete Laplacian operators from lattice hydrodynamics
,”
J. Comput. Phys.
234
,
1
7
(
2013
).
58.
C. A.
Whitfield
,
D.
Marenduzzo
,
R.
Voituriez
, and
R. J.
Hawkins
, “
Active polar fluid flow in finite droplets
,”
Eur. Phys. J. E
37
,
8
(
2014
).
59.
A. R.
Fialho
,
M. R.
Blow
, and
D.
Marenduzzo
, “
Anchoring-driven spontaneous rotations in active gel droplets
,”
Soft Matter
13
,
5933
5941
(
2017
).
60.
A.
Loisy
,
J.
Eggers
, and
T. B.
Liverpool
, “
How many ways a cell can move: The modes of self-propulsion of an active drop
,”
Soft Matter
16
,
3106
3124
(
2020
).
61.
A.
Loisy
,
J.
Eggers
, and
T. B.
Liverpool
, “
Tractionless self-propulsion of active drops
,”
Phys. Rev. Lett.
123
,
248006
(
2019
).
62.
R.
Voituriez
,
J. F.
Joanny
, and
J.
Prost
, “
Spontaneous flow transition in active polar gels
,”
Europhys. Lett.
70
,
404
(
2005
).
63.
K. M.
Stroka
,
H.
Jiang
,
S. H.
Chen
,
Z.
Tong
,
D.
Wirtz
,
S. X.
Sun
, and
K.
Konstantopoulos
, “
Water permeation drives tumor cell migration in confined microenvironments
,”
Cell
157
,
611
623
(
2014
).
64.
A.
Munoz-Bonilla
,
R.
Cuervo-Rodriguez
,
F.
Lopez-Fabal
,
J. L.
Gomez-Garces
, and
M.
Fernandez-Garcia
, “
Antimicrobial porous surfaces prepared by breath figures approach
,”
Materials
11
,
1266
(
2018
).
65.
T.
Lämmermann
,
B. L.
Bader
,
S. J.
Monkley
,
T.
Worbs
,
R.
Wedlich-Söldner
,
K.
Hirsch
,
M.
Keller
,
R.
Förster
,
D.
Critchley
,
R.
Fässler
, and
M.
Sixt
, “
Rapid leukocyte migration by integrin-independent flowing and squeezing
,”
Nature
453
,
51
55
(
2008
).
66.
E.
Tjhung
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Contractile and chiral activities codetermine the helicity of swimming droplet trajectories
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
4631
4636
(
2017
).
67.
L. J.
Ruske
and
J. M.
Yeomans
, “
Morphology of active deformable 3D droplets
,”
Phys. Rev. X
11
,
021001
(
2021
).

Supplementary Material

You do not currently have access to this content.