The human tear film is a multilayer structure in which the dynamics are often strongly affected by a floating lipid layer. That layer has liquid crystalline characteristics and plays important roles in the health of the tear film. Previous models have treated the lipid layer as a Newtonian fluid in extensional flow. Motivated to develop a more realistic treatment, we present a model for the extensional flow of thin sheets of nematic liquid crystal. The rod-like molecules of these substances impart an elastic contribution to the rheology. We rescale a weakly elastic model due to Cummings et al. [“Extensional flow of nematic liquid crystal with an applied electric field,” Eur. J. Appl. Math. 25, 397–423 (2014).] to describe a lipid layer of moderate elasticity. The resulting system of two nonlinear partial differential equations for sheet thickness and axial velocity is fourth order in space, but still represents a significant reduction of the full system. We analyze solutions arising from several different boundary conditions, motivated by the underlying application, with particular focus on dynamics and underlying mechanisms under stretching. We solve the system numerically, via collocation with either finite difference or Chebyshev spectral discretization in space, together with implicit time stepping. At early times, depending on the initial film shape, pressure either aids or opposes extensional flow, which changes the free surface dynamics of the sheet and can lead to patterns reminiscent of those observed in tear films. We contrast this finding with the cases of weak elasticity and Newtonian flow, where the sheet retains the same qualitative shape throughout time.
Skip Nav Destination
Article navigation
June 2023
Research Article|
June 12 2023
Extensional flow of a free film of nematic liquid crystal with moderate elasticity
Special Collection:
Flow and the Eye
M. J. Taranchuk
;
M. J. Taranchuk
(Formal analysis, Writing – original draft, Writing – review & editing)
1
Department of Mathematical Sciences, University of Delaware
, Newark, Delaware 19716, USA
Search for other works by this author on:
L. J. Cummings
;
L. J. Cummings
(Formal analysis, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing)
2
Department of Mathematical Sciences, New Jersey Institute of Technology
, Newark, New Jersey 07102, USA
Search for other works by this author on:
T. A. Driscoll
;
T. A. Driscoll
(Formal analysis, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing)
1
Department of Mathematical Sciences, University of Delaware
, Newark, Delaware 19716, USA
Search for other works by this author on:
R. J. Braun
R. J. Braun
a)
(Conceptualization, Formal analysis, Funding acquisition, Project administration, Supervision, Writing – original draft, Writing – review & editing)
1
Department of Mathematical Sciences, University of Delaware
, Newark, Delaware 19716, USA
a)Author to whom correspondence should be addressed: rjbraun@udel.edu
Search for other works by this author on:
a)Author to whom correspondence should be addressed: rjbraun@udel.edu
Note: This paper is part of the special topic, Flow and the Eye.
Physics of Fluids 35, 062113 (2023)
Article history
Received:
March 24 2023
Accepted:
May 23 2023
Citation
M. J. Taranchuk, L. J. Cummings, T. A. Driscoll, R. J. Braun; Extensional flow of a free film of nematic liquid crystal with moderate elasticity. Physics of Fluids 1 June 2023; 35 (6): 062113. https://doi.org/10.1063/5.0151809
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00