The human tear film is a multilayer structure in which the dynamics are often strongly affected by a floating lipid layer. That layer has liquid crystalline characteristics and plays important roles in the health of the tear film. Previous models have treated the lipid layer as a Newtonian fluid in extensional flow. Motivated to develop a more realistic treatment, we present a model for the extensional flow of thin sheets of nematic liquid crystal. The rod-like molecules of these substances impart an elastic contribution to the rheology. We rescale a weakly elastic model due to Cummings et al. [“Extensional flow of nematic liquid crystal with an applied electric field,” Eur. J. Appl. Math. 25, 397–423 (2014).] to describe a lipid layer of moderate elasticity. The resulting system of two nonlinear partial differential equations for sheet thickness and axial velocity is fourth order in space, but still represents a significant reduction of the full system. We analyze solutions arising from several different boundary conditions, motivated by the underlying application, with particular focus on dynamics and underlying mechanisms under stretching. We solve the system numerically, via collocation with either finite difference or Chebyshev spectral discretization in space, together with implicit time stepping. At early times, depending on the initial film shape, pressure either aids or opposes extensional flow, which changes the free surface dynamics of the sheet and can lead to patterns reminiscent of those observed in tear films. We contrast this finding with the cases of weak elasticity and Newtonian flow, where the sheet retains the same qualitative shape throughout time.

1.
R. J.
Braun
,
P. E.
King-Smith
,
C. G.
Begley
,
L.
Li
, and
N. R.
Gewecke
, “
Dynamics and function of the tear film in relation to the blink cycle
,”
Prog. Retinal Eye Res.
45
,
132
164
(
2015
).
2.
M.
Willcox
,
P.
Arguëso
,
G.
Georgiev
,
J.
Holopainen
,
G.
Laurie
,
T.
Millar
,
E.
Papas
,
J.
Rolland
,
T.
Schmidt
,
U.
Stahl
,
T.
Suarez
,
L.
Subbaraman
,
O.
Ucakhan
, and
L.
Jones
, “
TFOS DEWS-II tear film report
,”
Ocul. Surf.
15
,
369
403
(
2017
).
3.
P. E.
King-Smith
,
J. J.
Nichols
,
K. K.
Nichols
, and
R. J.
Braun
, “
A high resolution microscope for imaging the lipid layer of the tear film
,”
Ocul. Surf.
9
,
197
211
(
2011
).
4.
P. E.
King-Smith
,
B. A.
Fink
,
R. M.
Hill
,
K. W.
Koelling
, and
J. M.
Tiffany
, “
The thickness of the tear film
,”
Curr. Eye. Res.
29
,
357
368
(
2004
).
5.
A.
Bron
,
J.
Tiffany
,
S.
Gouveia
,
N.
Yokoi
, and
L.
Voon
, “
Functional aspects of the tear film lipid layer
,”
Exp. Eye Res.
78
,
347
360
(
2004
).
6.
I. K.
Gipson
, “
Distribution of mucins at the ocular surface
,”
Exp. Eye Res.
78
,
379
388
(
2004
).
7.
B.
Govindarajan
and
I.
Gipson
, “
Membrane-tethered mucins have multiple functions on the ocular surface
,”
Exp. Eye Res.
90
,
655
693
(
2010
).
8.
A.
Bron
,
P.
Argüeso
,
M.
Irkec
, and
F. V.
Bright
, “
Clinical staining of the ocular surface: Mechanisms and interpretations
,”
Prog. Retinal Eye Res
44
,
36
61
(
2015
).
9.
M.
Fini
,
S.
Jeong
,
H.
Gong
,
R.
Martinez-Carrasco
,
N.
Laver
,
M.
Hijikata
,
N.
Keicho
, and
P.
Argüeso
, “
Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse
,”
Prog. Retinal Eye Res.
75
,
100777
(
2020
).
10.
M.
Hogan
,
J.
Alvarado
, and
J.
Weddell
,
Histology of the Human Eye
(
W.B. Saunders
,
Philadelphia
,
1971
).
11.
P. E.
King-Smith
,
C. G.
Begley
, and
R. J.
Braun
, “
Mechanisms, imaging and structure of tear film breakup
,”
Ocul. Surf.
16
,
4
30
(
2018
).
12.
N.
Yokoi
,
G. A.
Georgiev
,
H.
Kato
,
A.
Komuro
,
Y.
Sonomura
,
C.
Sotozono
,
K.
Tsubota
, and
S.
Kinoshita
, “
Classification of fluorescein breakup patterns: A novel method of differential diagnosis for dry eye
,”
Am. J. Ophthalmol.
180
,
72
85
(
2017
).
13.
J. P.
Gilbard
,
R. L.
Farris
, and
J.
Santamaria
, “
Osmolarity of tear microvolumes in keratoconjunctivitis sicca
,”
Arch. Ophthalmol.
96
,
677
681
(
1978
).
14.
C.
Baudouin
,
P.
Aragona
,
E. M.
Messmer
,
A.
Tomlinson
,
M.
Calonge
,
K. G.
Boboridis
,
Y. A.
Akova
,
G.
Geerling
,
M.
Labetoulle
, and
M.
Rolando
, “
Role of hyperosmolarity in the pathogenesis and management of dry eye disease: Proceedings of the OCEAN group meeting
,”
Ocul. Surf.
11
,
246
258
(
2013
).
15.
J. P.
Craig
,
K. K.
Nichols
,
E. K.
Akpek
,
B.
Caffery
,
H. S.
Dua
,
C.-K.
Joo
,
Z.
Liu
,
J. D.
Nelson
,
J. J.
Nichols
,
K.
Tsubota
et al, “
TFOS DEWS-II definition and classification report
,”
Ocul. Surf.
15
,
276
283
(
2017
).
16.
P. E.
King-Smith
,
K. S.
Reuter
,
R. J.
Braun
,
J. J.
Nichols
, and
K. K.
Nichols
, “
Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer, TFLL, images
,”
Invest. Ophthalmol. Vis. Sci.
54
,
4900
4909
(
2013
).
17.
S.
Mishima
and
D.
Maurice
, “
The oily layer of the tear film and evaporation from the corneal surface
,”
Exp. Eye Res.
1
,
39
45
(
1961
).
18.
P. E.
King-Smith
,
E. A.
Hinel
, and
J. J.
Nichols
, “
Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning
,”
Invest. Ophthalmol. Vis. Sci.
51
,
2418
2423
(
2010
).
19.
I. A.
Butovich
,
H.
Lu
,
A.
McMahon
,
H.
Ketelson
,
M.
Senchyna
,
D.
Meadows
,
E.
Campbell
,
M.
Molai
, and
E.
Linsenbardt
, “
Biophysical and morphological evaluation of human normal and dry eye meibum using hot stage polarized light microscopy
,”
Invest. Ophthalmol. Vis. Sci.
55
,
87
101
(
2014
).
20.
D. L.
Leiske
,
C. I.
Leiske
,
D. R.
Leiske
,
M. F.
Toney
,
M.
Senchyna
,
H. A.
Ketelson
,
D. L.
Meadows
, and
G. G.
Fuller
, “
Temperature-induced transitions in the structure and interfacial rheology of human meibum
,”
Biophys. J.
102
,
369
376
(
2012
).
21.
D. L.
Leiske
,
C. E.
Miller
,
L.
Rosenfeld
,
C.
Cerretani
,
A.
Ayzner
,
B.
Lin
,
M.
Meron
,
M.
Senchyna
,
H. A.
Ketelson
,
D.
Meadows
,
S.
Srinivasan
,
L.
Jones
,
C. J.
Radke
,
M. F.
Toney
, and
G. G.
Fuller
, “
Molecular structure of interfacial human meibum films
,”
Langmuir
28
,
11858
11865
(
2012
).
22.
L.
Rosenfeld
,
C.
Cerretani
,
D. L.
Leiske
,
M. F.
Toney
,
C. J.
Radke
, and
G. G.
Fuller
, “
Structural and rheological properties of meibomian lipid
,”
Invest. Ophthalmol. Vis. Sci.
54
,
2720
2732
(
2013
).
23.
E.
Knop
,
N.
Knop
,
T.
Millar
,
H.
Obata
, and
D.
Sullivan
, “
The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland
,”
Invest. Ophthalmol. Vis. Sci.
52
,
1938
1978
(
2011
).
24.
P.
Sirigu
,
R.-L.
Shen
, and
P.
da Silva
, “
Human meibomian glands: The ultrastucture of acinar cells as viewed by thin section and freeze-fracture transmission electron microscopies
,”
Invest. Ophthalmol. Vis. Sci.
33
,
2284
2292
(
1992
).
25.
P. E.
King-Smith
,
M. D.
Bailey
, and
R. J.
Braun
, “
Four characteristics and a model of an effective tear film lipid layer
,”
Ocul. Surf.
11
,
236
245
(
2013
).
26.
J. C.
Pandit
,
B.
Nagyová
,
A. J.
Bron
, and
J. M.
Tiffany
, “
Physical properties of stimulated and unstimulated tears
,”
Exp. Eye Res.
68
,
247
253
(
1999
).
27.
G.
Georgiev
,
D.
Borchman
,
P.
Eftimov
, and
N.
Yokoi
, “
Lipid saturation and the rheology of human tear lipids
,”
Int. J. Molec. Sci.
20
,
3431
(
2019
).
28.
D.-K.
Yang
and
S.-T.
Wu
,
Fundamentals of Liquid Crystal Devices
,
2nd ed
. (
Wiley
,
Chichester
,
2015
).
29.
N.
Efron
,
G.
Young
, and
N. A.
Brennan
, “
Ocular surface temperature
,”
Curr. Eye Res.
8
,
901
906
(
1989
).
30.
J. P.
Craig
,
I.
Singh
,
A.
Tomlinson
,
P. B.
Morgan
, and
N.
Efron
, “
The role of tear physiology in ocular surface temperature
,”
Eye
14
,
635
641
(
2000
).
31.
C.
Purslow
and
J. S.
Wolffsohn
, “
Ocular surface temperature: A review
,”
Eye Contact Lens
31
,
117
123
(
2005
).
32.
Q.
Deng
,
R. J.
Braun
,
T. A.
Driscoll
, and
P. E.
King-Smith
, “
A model for the tear film and ocular surface temperature for partial blinks
,”
Interfacial Phenom. Heat Transfer.
1
,
357
381
(
2013
).
33.
Q.
Deng
,
R. J.
Braun
, and
T. A.
Driscoll
, “
Heat transfer and tear film dynamics over multiple blink cycles
,”
Phys. Fluids
26
,
071901
(
2014
).
34.
C. J.
Petrie
, “
One hundred years of extensional flow
,”
J. Nonnewton. Fluid Mech.
137
,
1
14
(
2006
).
35.
P. D.
Howell
, “
Extensional thin layer flows
,” Ph.D. thesis (
Oxford University
,
Oxford, UK
,
1994
).
36.
W. W.
Schultz
and
S. H.
Davis
, “
One-dimensional liquid fibers
,”
J. Rheol.
26
,
331
345
(
1982
).
37.
J. N.
Dewynne
,
J. R.
Ockendon
, and
P.
Wilmott
, “
A systematic derivation of the leading-order equations for extensional flows in slender geometries
,”
J. Fluid Mech.
244
,
323
338
(
1992
).
38.
J. N.
Dewynne
,
P. D.
Howell
, and
P.
Wilmott
, “
Slender viscous fibres with inertia and gravity
,”
Q. J. Mech. Appl. Math.
47
,
541
555
(
1994
).
39.
J. J.
Wylie
,
H.
Huang
, and
R. M.
Miura
, “
Stretching of viscous threads at low Reynolds numbers
,”
J. Fluid Mech.
683
,
212
234
(
2011
).
40.
C.
Clasen
,
J.
Eggers
,
M. A.
Fontelos
,
J.
Li
, and
G. H.
McKinley
, “
The beads-on-string structure of viscoelastic threads
,”
J. Fluid Mech.
556
,
283
308
(
2006
).
41.
M. C.
Sostarecz
and
A.
Belmonte
, “
Beads-on-string phenomena in wormlike micellar fluids
,”
Phys. Fluids
16
,
L67
L70
(
2004
).
42.
L. B.
Smolka
,
A.
Belmonte
,
D. M.
Henderson
, and
T. P.
Witelski
, “
Exact solution for the extensional flow of a viscoelastic filament
,”
Eur. J. Appl. Math.
15
,
679
712
(
2004
).
43.
L. J.
Cummings
,
J.
Low
, and
T. G.
Myers
, “
Extensional flow of nematic liquid crystal with an applied electric field
,”
Eur. J. Appl. Math.
25
,
397
423
(
2014
).
44.
T.-S.
Lin
,
L. J.
Cummings
,
A. J.
Archer
,
L.
Kondic
, and
U.
Thiele
, “
Note on the hydrodynamic description of thin nematic films: Strong anchoring model
,”
Phys. Fluids
25
,
082102
(
2013
).
45.
M. A.
Lam
,
L. J.
Cummings
,
T.-S.
Lin
, and
L.
Kondic
, “
Modeling flow of nematic liquid crystal down an incline
,”
J. Eng. Math.
94
,
97
113
(
2015
).
46.
F. M.
Leslie
, “
Theory of flow phenomena in liquid crystals
,” in
Advances in Liquid Crystals
(
Elsevier
,
1979
), Vol.
4
, pp.
1
81
.
47.
I. W.
Stewart
,
The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction
(
CRC Press
,
2019
).
48.
M. G.
Doane
, “
Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink
,”
Am. J. Ophthalmol.
89
,
507
516
(
1980
).
49.
L. W.
Honaker
,
A.
Sharma
,
A.
Schanen
, and
J. P.
Lagerwall
, “
Measuring the anisotropy in interfacial tension of nematic liquid crystals
,”
Crystals
11
,
687
(
2021
).
50.
F. T.
Trouton
, “
On the coefficient of viscous traction and its relation to that of viscosity
,”
Proc. R. Soc. A
77
,
426
440
(
1906
).
51.
L. M.
Tarakhan
, “
Determination of the surface tension of 5CB liquid crystal by the pendant drop method
,”
Ukr. Fiz. Zhur.
51
,
22
26
(
2006
).
52.
C.-C.
Peng
,
C.
Cerretani
,
R. J.
Braun
, and
C. J.
Radke
, “
Evaporation-driven instability of the precorneal tear film
,”
Adv. Colloid Interface Sci.
206
,
250
264
(
2014
).
53.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
Philadelphia
,
2000
).
54.
M. B.
Jones
,
D. L. S.
McElwain
,
G. R.
Fulford
,
M. J.
Collins
, and
A. P.
Roberts
, “
The effect of the lipid layer on tear film behaviour
,”
Bull. Math. Biol.
68
,
1355
1381
(
2006
).
55.
M. B.
Jones
,
C. P.
Please
,
D. L. S.
McElwain
,
G. R.
Fulford
,
A. P.
Roberts
, and
M. J.
Collins
, “
Dynamics of tear film deposition and draining
,”
Math. Med. Biol. J. IMA
22
,
265
288
(
2005
).
56.
A.
Heryudono
,
R. J.
Braun
,
T. A.
Driscoll
,
K. L.
Maki
,
L. P.
Cook
, and
P. E.
King-Smith
, “
Single-equation models for the tear film in a blink cycle: Realistic lid motion
,”
Math. Med. Biol. J. IMA
24
,
347
377
(
2007
).
57.
K. L.
Maki
,
R. J.
Braun
,
T. A.
Driscoll
, and
P. E.
King-Smith
, “
An overset grid method for the study of reflex tearing
,”
Math. Med. Biol.
25
,
187
214
(
2008
).
58.
L.
Jossic
,
P.
Lefevre
,
C.
de Loubens
,
A.
Magnin
, and
C.
Corre
, “
The fluid mechanics of shear-thinning tear substitutes
,”
J. Non-Newtonian Fluid Mech.
161
,
1
9
(
2009
).
59.
E.
Aydemir
,
C. J. W.
Breward
, and
T. P.
Witelski
, “
The effect of polar lipids on tear film dynamics
,”
Bull. Math. Biol.
73
,
1171
1201
(
2011
).
60.
M.
Allouche
,
H. A.
Abderrahmane
,
S. M.
Djouadi
, and
K.
Mansouri
, “
Influence of curvature on tear film dynamics
,”
Eur. J. Mech. B Fluids
66
,
81
91
(
2017
).
61.
H.
Mehdaoui
,
H. A.
Abderrahmane
,
F. N.
Bouda
, and
A.
Koulali
, “
2D numerical simulation of tear film dynamics: Effects of shear-thinning properties
,”
Eur. J. Mech. B Fluids
90
,
128
136
(
2021
).
62.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
980
(
1997
).
63.
A. L.
Bertozzi
,
M. P.
Brenner
,
T. F.
Dupont
, and
L. P.
Kadanoff
, “
Singularities and similarities in interface flows
,” in
Trends and Perspectives in Applied Mathematics, Applied Mathematical Sciences
, edited by
L.
Sirovich
(
Springer-Verlag
,
New York
,
1994
), Vol.
100
, pp.
155
208
.
64.
M.
Bruna
and
C. J. W.
Breward
, “
The influence of non-polar lipids on tear film dynamics
,”
J. Fluid Mech.
746
,
565
605
(
2014
).
65.
M. R.
Stapf
,
R. J.
Braun
, and
P. E.
King-Smith
, “
Duplex tear film evaporation analysis
,”
Bull. Math. Biol.
79
,
2814
2846
(
2017
).
66.
V. S.
Zubkov
,
C. J. W.
Breward
, and
E. A.
Gaffney
, “
Coupling fluid and solute dynamics within the ocular surface tear film: A modelling study of black line osmolarity
,”
Bull. Math. Biol.
74
,
2062
2093
(
2012
).
67.
P. D.
Howell
, “
Models for thin viscous sheets
,”
Eur. J. Appl. Math.
7
,
321
343
(
1996
).
You do not currently have access to this content.