The contact line pinning mechanisms of a non-wetting droplet penetrating a permeable substrate are theoretically explained by considering the force balance of volumetric force, capillary force, and pinning and depinning forces. We propose two dimensionless numbers, Bo—the ratio of the volumetric force to the capillary force, and Ct—the ratio of the depinning force to the pinning force, to establish a phase diagram that quickly determines the droplet penetration patterns. For Bo ⩽ 1, the droplet will not penetrate the substrate; for Bo > 1 and Ct ⩽ 1, the droplet will penetrate with a pinned contact line; for Bo > 1 and Ct > 1, the droplet will penetrate with contact line shrinking. Contact angle dynamics during contact line pinning and shrinking are further clarified. The time evolutions of the contact area diameter Dc, the droplet height h, the penetrated droplet volume percentage Sp, and the apparent contact angle θ are derived. We further perform a series of lattice Boltzmann simulations, and the results match well with our theoretical analysis. These theoretical and numerical results pave the way to achieve better performances of many important applications that involve droplet penetration.

1.
M.
Singh
,
H. M.
Haverinen
,
P.
Dhagat
, and
G. E.
Jabbour
, “
Inkjet printing-process and its applications
,”
Adv. Mater.
22
,
673
(
2010
).
2.
A.
Clarke
,
T. D.
Blake
,
K.
Carruthers
, and
A.
Woodward
, “
Spreading and imbibition of liquid droplets on porous surfaces
,”
Langmuir
18
,
2980
(
2002
).
3.
P.
Olin
,
S. B.
Lindstrom
,
T.
Pettersson
, and
L.
Wagberg
, “
Water drop friction on superhydrophobic surfaces
,”
Langmuir
29
,
9079
(
2013
).
4.
G. A.
Lehrsch
,
R. D.
Lentz
, and
D. C.
Kincaid
, “
Polymer and sprinkler droplet energy effects on sugar beet emergence, soil penetration resistance, and aggregate stability
,”
Plant Soil
273
,
1
(
2005
).
5.
A.
Sankaran
,
J.
Wu
,
R.
Granda
,
V.
Yurkiv
,
F.
Mashayek
, and
A.
Yarin
, “
Drop impact onto polarized dielectric surface for controlled coating
,”
Phys. Fluids
33
,
062101
(
2021
).
6.
M.-R.
Pendar
,
F.
Rodrigues
,
J. C.
Páscoa
, and
R.
Lima
, “
Review of coating and curing processes: Evaluation in automotive industry
,”
Phys. Fluids
34
,
101301
(
2022
).
7.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical analysis of charged droplets size distribution in the electrostatic coating process: Effect of different operational conditions
,”
Phys. Fluids
33
,
033317
(
2021
).
8.
M.
Hlavacek
, “
Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane
,”
J. Membr. Sci.
102
,
1
(
1995
).
9.
D. M.
Anderson
, “
Imbibition of a liquid droplet on a deformable porous substrate
,”
Phys. Fluids
17
,
087104
(
2005
).
10.
T.
Zhang
,
C.
Li
, and
S.
Sun
, “
Effect of temperature on oil–water separations using membranes in horizontal separators
,”
Membranes
12
,
232
(
2022
).
11.
K.
Bui
,
I. Y.
Akkutlu
,
A.
Zelenev
,
H.
Saboowala
,
J. R.
Gillis
, and
J. A.
Silas
, “
Insights into mobilization of shale oil by use of microemulsion
,”
SPE J.
21
,
613
(
2016
).
12.
S.
Du
,
J.
Wang
,
M.
Wang
,
J.
Yang
,
C.
Zhang
,
Y.
Zhao
, and
H.
Song
, “
A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns
,”
Energy
263
,
126121
(
2023
).
13.
S.-Y.
Du
,
X.-G.
Zhao
,
C.-Y.
Xie
,
J.-W.
Zhu
,
J.-L.
Wang
,
J.-S.
Yang
, and
H.-Q.
Song
, “
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
,”
Pet. Sci.
(in press) (
2023
).
14.
C.
Xie
,
S.
Du
,
J.
Wang
,
J.
Lao
, and
H.
Song
, “
Intelligent modeling with physics-informed machine learning for petroleum engineering problems
,”
Adv. Geo-Energy Res.
8
,
71
(
2023
).
15.
A. D.
Le
and
B.
Zhou
, “
A general model of proton exchange membrane fuel cell
,”
J. Power Sources
182
,
197
(
2008
).
16.
H. M.
Yu
,
C.
Ziegler
,
M.
Oszcipok
,
M.
Zobel
, and
C.
Hebling
, “
Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells
,”
Electrochim. Acta
51
,
1199
(
2006
).
17.
K.
Haldar
,
M. S.
Tirumkudulu
,
A.
Jain
,
D. O.
Blackwood
,
A.
Berchielli
, and
P.
Doshi
, “
Experimental evaluation of the impact of rapid environmental changes on stress distribution in tablet coatings
,”
AAPS PharmSciTech
24
,
30
(
2022
).
18.
K.
Holmberg
and
A.
Matthews
,
Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering
(
Elsevier
,
2009
).
19.
B. S.
Tomar
,
M. S.
Tirumkudulu
,
W.
Yu
,
A.
Berchielli
, and
P.
Doshi
, “
Osmotic tablet coatings: Drying stress, mechanical properties and microstructure
,”
Int. J. Pharm.
617
,
121611
(
2022
).
20.
B.
Fotovvati
,
N.
Namdari
, and
A.
Dehghanghadikolaei
, “
On coating techniques for surface protection: A review
,”
J. Manuf. Mater. Process.
3
,
28
(
2019
).
21.
M. S.
Tirumkudulu
and
V. S.
Punati
, “
Solventborne polymer coatings: Drying, film formation, stress evolution, and failure
,”
Langmuir
38
,
2409
(
2022
).
22.
F.
Fu
,
P.
Li
,
K.
Wang
, and
R.
Wu
, “
Numerical simulation of sessile droplet spreading and penetration on porous substrates
,”
Langmuir
35
,
2917
(
2019
).
23.
J.
Du
,
X.
Wang
,
Y.
Li
, and
Q.
Min
, “
Maximum spreading of liquid droplets impact on concentric ring-textured surfaces: Theoretical analysis and numerical simulation
,”
Colloids Surf., A
630
,
127647
(
2021
).
24.
S.
Das
,
H.
Patel
,
E.
Milacic
,
N.
Deen
, and
J.
Kuipers
, “
Droplet spreading and capillary imbibition in a porous medium: A coupled IB-VOF method based numerical study
,”
Phys. Fluids
30
,
012112
(
2018
).
25.
Y.
Shi
,
G.
Tang
,
H.
Lin
,
P.
Zhao
, and
L.
Cheng
, “
Dynamics of droplet and liquid layer penetration in three-dimensional porous media: A lattice Boltzmann study
,”
Phys. Fluids
31
,
042106
(
2019
).
26.
M.
Denesuk
,
G. L.
Smith
,
B. J. J.
Zelinski
,
N. J.
Kreidl
, and
D. R.
Uhlmann
, “
Capillary penetration of liquid droplets into porous materials
,”
J. Colloid Interface Sci.
158
,
114
(
1993
).
27.
K. H. A.
Al-Ghaithi
,
O. G.
Harlen
,
N.
Kapur
, and
M. C. T.
Wilson
, “
Morphologies and dynamics of micro-droplet impact onto an idealised scratch
,”
J. Fluid Mech.
925
,
A23
(
2021
).
28.
L.
Espin
and
S.
Kumar
, “
Droplet spreading and absorption on rough, permeable substrates
,”
J. Fluid Mech.
784
,
465
(
2015
).
29.
N.
Alleborn
and
H.
Raszillier
, “
Spreading and sorption of droplets on layered porous substrates
,”
J. Colloid Interface Sci.
280
,
449
(
2004
).
30.
H.
Ding
and
T. G.
Theofanous
, “
The inertial regime of drop impact on an anisotropic porous substrate
,”
J. Fluid Mech.
691
,
546
(
2012
).
31.
Y. D.
Shikhmurzaev
and
J. E.
Sprittles
, “
Dynamic contact angle of a liquid spreading on an unsaturated wettable porous substrate
,”
J. Fluid Mech.
715
,
273
(
2013
).
32.
S. H.
Davis
and
L. M.
Hocking
, “
Spreading and imbibition of viscous liquid on a porous base
,”
Phys. Fluids
11
,
48
(
1999
).
33.
S.
Bandyopadhyay
,
S.
Santra
,
S. S.
Das
,
R.
Mukherjee
, and
S.
Chakraborty
, “
Non-wetting liquid-infused slippery paper
,”
Langmuir
37
,
13627
(
2021
).
34.
S.
Adera
,
R.
Raj
,
R.
Enright
, and
E. N.
Wang
, “
Non-wetting droplets on hot superhydrophilic surfaces
,”
Nat. Commun.
4
,
2518
(
2013
).
35.
M. S.
Tirumkudulu
, “
Buckling of a drying colloidal drop
,”
Soft Matter
14
,
7455
(
2018
).
36.
A. S.
Mulmule
,
M. S.
Tirumkudulu
, and
K.
Ramamurthi
, “
Instability of a moving liquid sheet in the presence of acoustic forcing
,”
Phys. Fluids
22
,
022101
(
2010
).
37.
P.
Yue
and
Y.
Renardy
, “
Spontaneous penetration of a non-wetting drop into an exposed pore
,”
Phys. Fluids
25
,
052104
(
2013
).
38.
Y.
Nonomura
,
T.
Tanaka
, and
H.
Mayama
, “
Penetration behavior of a water droplet into a cylindrical hydrophobic pore
,”
Langmuir
32
,
6328
(
2016
).
39.
B.
Pan
,
C. R.
Clarkson
,
M.
Atwa
,
C.
Debuhr
,
A.
Ghanizadeh
, and
V. I.
Birss
, “
Wetting dynamics of nanoliter water droplets in nanoporous media
,”
J. Colloid Interface Sci.
589
,
411
(
2021
).
40.
C. Y.
Xie
,
J. Y.
Zhang
,
V.
Bertola
, and
M. R.
Wang
, “
Lattice Boltzmann modeling for multiphase viscoplastic fluid flow
,”
J. Non-Newtonian Fluid Mech.
234
,
118
(
2016
).
41.
V. A.
Lubarda
and
K. A.
Talke
, “
Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model
,”
Langmuir
27
,
10705
(
2011
).
42.
J.
Kozeny
, “
Uber kapillare leitung der wasser in boden
,”
R. Acad. Sci. Vienna, Proc. Class I
136
,
271
(
1927
).
43.
P. C.
Carman
, “
Fluid flow through granular beds
,”
Chem. Eng. Res. Des.
75
,
S32
(
1997
).
44.
B.
Xiao
,
W.
Wang
,
X.
Zhang
,
G.
Long
,
J.
Fan
,
H.
Chen
, and
L.
Deng
, “
A novel fractal solution for permeability and Kozeny–Carman constant of fibrous porous media made up of solid particles and porous fibers
,”
Powder Technol.
349
,
92
(
2019
).
45.
P.
Xu
and
B.
Yu
, “
Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry
,”
Adv. Water Resour.
31
,
74
(
2008
).
46.
L. M.
Cha
,
C. Y.
Xie
,
Q. H.
Feng
, and
M.
Balhoff
, “
Geometric criteria for the snap-off of a non-wetting droplet in pore-throat channels with rectangular cross-sections
,”
Water Resour. Res.
57
,
e2020WR029476
, https://doi.org/10.1029/2020WR029476 (
2021
).
47.
X.
Chen
,
R.
Ma
,
J.
Li
,
C.
Hao
,
W.
Guo
,
B. L.
Luk
,
S. C.
Li
,
S.
Yao
, and
Z.
Wang
, “
Evaporation of droplets on superhydrophobic surfaces: Surface roughness and small droplet size effects
,”
Phys. Rev. Lett.
109
,
116101
(
2012
).
48.
C. W.
Extrand
, “
Model for contact angles and hysteresis on rough and ultraphobic surfaces
,”
Langmuir
18
,
7991
(
2002
).
49.
R. T.-P.
Chow
, “
On the ability of drops or bubbles to stick to non-horizontal surfaces of solids
,”
J. Fluid Mech.
137
,
1
(
1983
).
50.
N. A.
Malvadkar
,
M. J.
Hancock
,
K.
Sekeroglu
,
W. J.
Dressick
, and
M. C.
Demirel
, “
An engineered anisotropic nanofilm with unidirectional wetting properties
,”
Nat. Mater.
9
,
1023
(
2010
).
51.
S.
Sarkar
,
T.
Roy
,
A.
Roy
,
S.
Moitra
,
R.
Ganguly
, and
C. M.
Megaridis
, “
Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness
,”
J. Colloid Interface Sci.
581
,
690
(
2021
).
52.
M.
Nosonovsky
and
B.
Bhushan
, “
Biomimetic superhydrophobic surfaces: Multiscale approach
,”
Nano Lett.
7
,
2633
(
2007
).
53.
M.
Muradoglu
and
S.
Tasoglu
, “
A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls
,”
Comput. Fluids
39
,
615
(
2010
).
54.
C.
Xie
,
W.
Lei
, and
M.
Wang
, “
Lattice Boltzmann model for three-phase viscoelastic fluid flow
,”
Phys. Rev. E
97
,
023312
(
2018
).
55.
C. Y.
Xie
,
W. H.
Lei
,
M. T.
Balhoff
,
M. R.
Wang
, and
S. Y.
Chen
, “
Self-adaptive preferential flow control using displacing fluid with dispersed polymers in heterogeneous porous media
,”
J. Fluid Mech.
906
,
A10
(
2021
).
56.
S.
Leclaire
,
N.
Pellerin
,
M.
Reggio
, and
J.
Trépanier
, “
Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method
,”
J. Phys. A: Math. Theor.
47
,
105501
(
2014
).
You do not currently have access to this content.