Thermal bubble-driven micro-pumps (also known as inertial pumps) are an upcoming micro-pump technology that can be integrated directly into micro/mesofluidic channels to displace fluid without moving parts. These micro-pumps are high-power resistors that locally vaporize a thin layer of fluid above the resistor surface to form a high-pressure vapor bubble which performs mechanical work. Despite their geometric simplicity, thermal bubble-driven micro-pumps are complex to model due to the multiphysics couplings of Joule heating, thermal bubble nucleation, phase change, and multiphase flow. As such, most simulation approaches simplify the physics by neglecting Joule heating, nucleation, and phase change effects as done in this study. To date, there are no readily available, reduced physics open-source modeling tools that can resolve both pre-collapse (defined as when the bubble is expanding and collapsing) and post-collapse (defined as when the bubble has re-dissolved back into the subcooled fluid) bubble and flow dynamics. In this study, an OpenFOAM framework for modeling thermal bubble-driven micro-pumps is presented, validated, and applied. The developed OpenFOAM model agrees with both experimental data and commercial computational fluid dynamics (CFD) software, FLOW-3D. Additionally, we assess the shape of the transient velocity profile during a pump cycle for the first time and find that it varies substantially from theoretical Poiseuille flow during pre-collapse but is within 25% of the theoretical flow profile during post-collapse. We find that this deviation is due to flow never becoming fully developed during each pump cycle. We envision the developed OpenFOAM framework as an open-source CFD toolkit for microfluidic designers to simulate devices with thermal bubble-driven micro-pumps.

1.
N.
Mishchuk
,
T.
Heldal
,
T.
Volden
,
J.
Auerswald
, and
H.
Knapp
, “
Micropump based on electroosmosis of the second kind
,”
Electrophoresis
30
,
3499
(
2009
).
2.
J.
Snyder
,
J.
Getpreecharsawas
,
D.
Fang
,
T.
Gaborski
,
C.
Striemer
,
P.
Fauchet
,
D.
Borkholder
, and
J.
McGrath
, “
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes
,”
Proc. Natl. Acad. Sci.
110
,
18425
18430
(
2013
).
3.
Q.
Shizhi
and
H.
Bau
, “
Magneto-hydrodynamics based microfluidics
,”
Mech. Res. Commun.
36
,
10–21
(
2009
).
4.
D.
Duffy
,
H.
Gillis
,
J.
Lin
,
N.
Sheppard
, and
G.
Kellogg
, “
Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays
,”
Anal. Chem.
71
,
4669
(
1999
).
5.
K.
Vinayakumar
,
G.
Nadiger
,
V.
Shetty
,
S.
Dinesh
,
M.
Nayak
, and
K.
Rajanna
, “
Packaged peristaltic micropump for controlled drug delivery application
,”
Rev. Sci. Instrum.
88
,
015102
(
2017
).
6.
T.
Ma
,
S.
Sun
,
B.
Li
, and
J.
Chu
, “
Piezoelectric peristaltic micropump integrated on a microfluidic chip
,”
Sens. Actuators, A
292
,
90
96
(
2019
).
7.
S.
Hassan
and
X.
Zhang
, “
Design and fabrication of capillary-driven flow device for point-of-care diagnostics
,”
Biosensors
10
,
39
(
2020
).
8.
E.
Torniainen
,
A.
Govyadinov
,
D.
Markel
, and
P.
Kornilovitch
, “
Bubble-driven inertial micropump
,”
Phys. Fluids
24
,
122003
(
2012
).
9.
M. I.
Mohammed
,
S.
Haswell
, and
I.
Gibson
, “
Lab-on-a-chip or chip-in-a-lab: Challenges of commercialization lost in translation
,”
Procedia Technol.
20
,
54
59
(
2015
).
10.
M.
Einat
and
M.
Grajower
, “
Microboiling measurements of thermal-inkjet heaters
,”
J. Microelectromech. Syst.
19
,
391
(
2010
).
11.
A.
Govyadinov
,
P.
Kornilovitch
,
D.
Markel
, and
E.
Torniainen
, “
Single-pulse dynamics and flow rates of inertial micropumps
,”
Microfluid. Nanofluid.
20
,
73
(
2016
).
12.
B.
Hayes
,
A.
Hayes
,
M.
Rolleston
,
A.
Ferreira
, and
J.
Kirsher
, “
Pulsatory mixing of laminar flow using bubble-driven micro-pumps
,” in
ASME International Mechanical Engineering Congress and Exposition
(
ASME
,
2018
).
13.
B.
Hayes
,
A.
Govyadinov
, and
P.
Kornilovitch
, “
Microfluidic switchboards with integrated inertial pumps
,”
Microfluid. Nanofluid.
22
,
15
(
2018
).
14.
H.
Hoefemann
,
S.
Wadle
,
N.
Bakhtina
,
V.
Kondrashov
,
N.
Wangler
, and
R.
Zengerle
, “
Sorting and lysis of single cells by bubblejet technology
,”
Sens. Actuators, B
168
,
442
445
(
2012
).
15.
D.
van den Broek
and
M.
Elwenspoek
, “
Explosive micro-bubble actuator
,”
Sens. Actuators, A
145–146
,
387
393
(
2008
).
16.
B.
Liu
,
Y.
Hou
,
D.
Li
, and
J.
Yang
, “
A thermal bubble micro-actuator with induction heating
,”
Sens. Actuators, A
222
,
8
14
(
2015
).
17.
K.
Okuyama
,
S.
Mori
,
K.
Sawa
, and
Y.
Iida
, “
Dynamics of boiling succeeding spontaneous nucleation on a rapidly heated small surface
,”
Int. J. Heat Mass Transfer
49
,
2771
2780
(
2006
).
18.
B.
Hayes
,
L.
Smith
,
H.
Kabutz
,
A. C.
Hayes
,
G. L.
Whiting
,
K.
Jayaram
, and
R.
MacCurdy
, “
Rapid fabrication of low-cost thermal bubble-driven micro-pumps
,”
Micromachines
13
,
1634
(
2022
).
19.
Y.
Qu
and
J.
Zhou
, “
Lumped parameter model and numerical model of vapor bubble-driven valve-less micro-pump
,”
Adv. Mech. Eng.
9
(
4
) (
2017
).
20.
O. E.
Ruiz
, “
CFD model of the thermal inkjet droplet ejection process
,” in
Heat Transfer Summer Conference
,
2007
.
21.
H.
Zhou
and
A.
Gué
, “
Simulation model and droplet ejection performance of a thermal-bubble microejector
,”
Sens. Actuators, B
145
,
311
319
(
2010
).
22.
Y.
Hong
,
N.
Ashgriz
,
J.
Andrews
, and
H.
Parizi
, “
Numerical simulation of growth and collapse of a bubble induced by a pulsed microheater
,”
J. Microelectromech. Syst.
13
,
857
869
(
2004
).
23.
B.
Hayes
,
G. L.
Whiting
, and
R.
MacCurdy
, “
Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps
,”
Phys. Fluids
33
,
042002
(
2021
).
24.
Z.
Yin
and
A.
Prosperetti
, “
‘Blinking bubble’ micropump with microfabricated heaters
,”
J. Micromech. Microeng.
15
,
1683
(
2005
).
25.
E.
Ory
,
H.
Yuan
,
A.
Prosperetti
,
S.
Popinet
, and
S.
Zaleski
, “
Growth and collapse of a vapor bubble in a narrow tube
,”
Phys. Fluids
12
,
1268
(
2000
).
26.
H.
Yuan
and
A.
Prosperetti
, “
The pumping effect of growing and collapsing bubbles in a tube
,”
J. Micromech. Microeng.
9
,
402
413
(
1999
).
27.
P.
Kornilovitch
,
A.
Govyadinov
,
D.
Markel
, and
E.
Torniainen
, “
One-dimensional model of inertial pumping
,”
Phys. Rev. E
87
,
023012
(
2013
).
28.
P. E.
Kornilovitch
,
T.
Cochell
, and
A. N.
Govyadinov
, “
Temperature dependence of inertial pumping in microchannels
,”
Phys. Fluids
34
,
022003
(
2022
).
29.
A.
Asai
, “
Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer
,”
J. Fluids Eng.
114
,
638
641
(
1992
).
30.
H.
Tan
,
E.
Torniainen
,
D. P.
Markel
, and
R. N. K.
Browning
, “
Numerical simulation of droplet ejection of thermal inkjet printheads
,”
Int. J. Numer. Methods Fluids
77
,
544
570
(
2015
).
31.
H.
Li
,
J.
Huang
,
X.
Wu
,
J.
Zhang
,
J.
Wang
,
Y.
Wang
, and
C.
Huang
, “
Dynamic behaviors of a laser-induced bubble and transition mechanism of collapse patterns in a tube
,”
AIP Adv.
10
,
035210
(
2020
).
32.
M.
Koch
,
J. M.
Rosselló
,
C.
Lechner
,
W.
Lauterborn
, and
R.
Mettin
, “
Dynamics of a laser-induced bubble above the flat top of a solid cylinder—Mushroom-shaped bubbles and the fast jet
,”
Fluids
7
,
2
(
2021
).
33.
J. M.
Rosselló
,
H.
Reese
, and
C.-D.
Ohl
, “
Dynamics of pulsed laser-induced cavities on a liquid–gas interface: From a conical splash to a ‘bullet’ jet
,”
J. Fluid Mech.
939
,
A35
(
2022
).
34.
Y.
Sun
,
Z.
Yao
,
H.
Wen
,
Q.
Zhong
, and
F.
Wang
, “
Cavitation bubble collapse in a vicinity of a rigid wall with a gas entrapping hole
,”
Phys. Fluids
34
,
073314
(
2022
).
35.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
36.
J.
Brackbill
,
D.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
37.
H. G.
Weller
, “
A new approach to VOF-based interface capturing methods for incompressible and compressible flow
,”
Report No. TR/HGW/04
(
OpenCFD Ltd
.,
2008
).
38.
S.
Timoshenko
and
J.
Goodier
,
Theory of Elasticity
,
3rd ed
. (
McGaw-Hill, Inc
.,
1970
).
39.
E. C.
Lemley
, “
Laminar entrance length in microtubes
,” in
Fluids Engineering Division Summer Meeting
,
2009
.
40.
J.
Koo
and
C.
Kleinstreuer
, “
Liquid flow in microchannels: Experimental observations and computational analyses of microfluidics effects
,”
J. Micromech. Microeng.
13
,
568
(
2003
).
41.
T.
Ahmad
and
I.
Hassan
, “
Experimental analysis of microchannel entrance length characteristics using microparticle image velocimetry
,”
J. Fluids Eng.
132
,
041102
(
2010
).
42.
R. A.
Chaudhury
,
M.
Herrmann
,
D. H.
Frakes
, and
R. J.
Adrian
, “
Length and time for development of laminar flow in tubes following a step increase of volume flux
,”
Exp. Fluids
56
,
22
(
2015
).
43.
G.
Ferreira
,
A.
Sucena
,
L. L.
Ferrás
,
F. T.
Pinho
, and
A. M.
Afonso
, “
Hydrodynamic entrance length for laminar flow in microchannels with rectangular cross section
,”
Fluids
6
,
240
(
2021
).
44.
J.
Anderson
,
P. J.
Burns
,
D.
Milroy
,
P.
Ruprecht
,
T.
Hauser
, and
H. J.
Siegel
, “
Deploying RMACC summit: An HPC resource for the rocky mountain region
,” in
Proceedings of the Practice and Experience in Advanced Research Computing on Sustainability, Success and Impact (PEARC17)
(
Association for Computing Machinery
,
New York
,
2017
).
You do not currently have access to this content.