Recent advancements in science and engineering have allowed for trapping and manipulation of individual particles and macromolecules within an aqueous medium using a flow-based confinement method. In this work, we demonstrate the feasibility of trapping and manipulating two particles using coupled planar extensional flows. Using Brownian dynamics simulations and a proportional feedback control algorithm, we show that two micro/nanoscale particles can be simultaneously confined and manipulated at the stagnation points of a pair of interconnected planar extensional flows. We specifically studied the effect of strain rate, particle size, and feedback control parameters on particle confinement. We also demonstrate precise control of the interparticle distance by manipulating the strain rates at both junctions and particle position at one of the junctions. We further discuss the advantages and limitations of the dual hydrodynamic trap in comparison to existing colloidal particle confinement methods and outline some potential applications in polymer science and biology. Our results demonstrate the versatility of flow-based confinement and further our understanding of feedback-controlled particle manipulation.

1.
K. C.
Neuman
and
S. M.
Block
, “
Optical trapping
,”
Rev. Sci. Instrum.
75
(
9
),
2787
2809
(
2004
).
2.
A.
Ozcelik
,
J.
Rufo
,
F.
Guo
,
Y.
Gu
,
P.
Li
,
J.
Lata
, and
T. J.
Huang
, “
Acoustic tweezers for the life sciences
,”
Nat. Methods
15
(
12
),
1021
1028
(
2018
).
3.
X.
Ding
,
S. C. S.
Lin
,
B.
Kiraly
,
H.
Yue
,
S.
Li
,
I. K.
Chiang
,
J.
Shi
,
S. J.
Benkovic
, and
T. J.
Huang
, “
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
28
),
11105
11109
(
2012
).
4.
A. H.
Squires
,
A. E.
Cohen
, and
W. E.
Moerner
, in
Encyclopedia of Biophysics
, edited by
G.
Roberts
and
A.
Watts
(
Springer
,
Berlin, Heidelberg
,
2018
), pp.
1
8
.
5.
Q.
Wang
and
W. E.
Moerner
, “
Single-molecule motions enable direct visualization of biomolecular interactions in solution
,”
Nat. Methods
11
(
5
),
555
558
(
2014
).
6.
A. H.
Squires
,
A. A.
Lavania
,
P. D.
Dahlberg
, and
W. E.
Moerner
, “
Interferometric scattering enables fluorescence-free electrokinetic trapping of single nanoparticles in free solution
,”
Nano Lett.
19
(
6
),
4112
4117
(
2019
).
7.
H.-K.
Choi
,
H. G.
Kim
,
M. J.
Shon
, and
T.-Y.
Yoon
, “
High-resolution single-molecule magnetic tweezers
,”
Annu. Rev. Biochem.
91
(
1
),
33
59
(
2022
).
8.
I.
De Vlaminck
and
C.
Dekker
, “
Recent advances in magnetic tweezers
,”
Annu. Rev. Biophys.
41
(
1
),
453
472
(
2012
).
9.
A.
Karimi
,
S.
Yazdi
, and
A. M.
Ardekani
, “
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
,”
Biomicrofluidics
7
(
2
),
021501
(
2013
).
10.
V.
Narayanamurthy
,
S.
Nagarajan
,
A. Y.
Firus Khan
,
F.
Samsuri
, and
T. M.
Sridhar
, “
Microfluidic hydrodynamic trapping for single cell analysis: Mechanisms, methods and applications
,”
Anal. Methods
9
(
25
),
3751
3772
(
2017
).
11.
R.
Probst
,
Z.
Cummins
,
C.
Ropp
,
E.
Waks
, and
B.
Shapiro
, “
Flow control of small objects on chip: Manipulating live cells, quantum dots, and nanowires
,”
IEEE Control Syst. Mag.
32
(
2
),
26
53
(
2012
).
12.
J.
Nilsson
,
M.
Evander
,
B.
Hammarström
, and
T.
Laurell
, “
Review of cell and particle trapping in microfluidic systems
,”
Anal. Chim. Acta
649
(
2
),
141
157
(
2009
).
13.
Q.
Luan
,
C.
Macaraniag
,
J.
Zhou
, and
I.
Papautsky
, “
Microfluidic systems for hydrodynamic trapping of cells and clusters
,”
Biomicrofluidics
14
(
3
),
031502
(
2020
).
14.
B. R.
Lutz
,
J.
Chen
, and
D. T.
Schwartz
, “
Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies
,”
Anal. Chem.
78
(
15
),
5429
5435
(
2006
).
15.
T.
Petit
,
L.
Zhang
,
K. E.
Peyer
,
B. E.
Kratochvil
, and
B. J.
Nelson
, “
Selective trapping and manipulation of microscale objects using mobile microvortices
,”
Nano Lett.
12
(
1
),
156
160
(
2012
).
16.
Z.
Ye
and
M.
Sitti
, “
Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot
,”
Lab Chip
14
(
13
),
2177
2182
(
2014
).
17.
T.-Y.
Huang
,
F.
Qiu
,
H.-W.
Tung
,
X.-B.
Chen
,
B. J.
Nelson
, and
M. S.
Sakar
, “
Generating mobile fluidic traps for selective three-dimensional transport of microobjects
,”
Appl. Phys. Lett.
105
(
11
),
114102
(
2014
).
18.
Q.
Zhou
,
T.
Petit
,
H.
Choi
,
B. J.
Nelson
, and
L.
Zhang
, “
Dumbbell fluidic tweezers for dynamical trapping and selective transport of microobjects
,”
Adv. Funct. Mater.
27
(
1
),
1604571
(
2017
).
19.
A. T.
Brimmo
and
M. A.
Qasaimeh
, “
Stagnation point flows in analytical chemistry and life sciences
,”
RSC Adv.
7
(
81
),
51206
51232
(
2017
).
20.
D.
Kumar
,
A.
Shenoy
,
J.
Deutsch
, and
C. M.
Schroeder
, “
Automation and flow control for particle manipulation
,”
Curr. Opin. Chem. Eng.
29
,
1
8
(
2020
).
21.
M.
Tanyeri
,
E. M.
Johnson-Chavarria
, and
C. M.
Schroeder
, “
Hydrodynamic trap for single particles and cells
,”
Appl. Phys. Lett.
96
(
22
),
224101
(
2010
).
22.
M.
Tanyeri
,
M.
Ranka
,
N.
Sittipolkul
, and
C. M.
Schroeder
, “
A microfluidic-based hydrodynamic trap: Design and implementation
,”
Lab Chip
11
(
10
),
1786
1794
(
2011
).
23.
M.
Tanyeri
and
C. M.
Schroeder
, “
Manipulation and confinement of single particles using fluid flow
,”
Nano Lett.
13
(
6
),
2357
2364
(
2013
).
24.
Y.
Jiang
,
T.
Feldman
,
J. A. M.
Bakx
,
D.
Yang
, and
W. P.
Wong
, “
Stretching DNA to twice the normal length with single-molecule hydrodynamic trapping
,”
Lab Chip
20
(
10
),
1780
1791
(
2020
).
25.
K. W.
Hsiao
,
C.
Sasmal
,
J.
Ravi Prakash
, and
C. M.
Schroeder
, “
Direct observation of DNA dynamics in semidilute solutions in extensional flow
,”
J. Rheol.
61
(
1
),
151
167
(
2017
).
26.
C. M.
Schroeder
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Observation of polymer conformation hysteresis in extensional flow
,”
Science
301
(
5639
),
1515
(
2003
).
27.
T. T.
Perkins
,
D. E.
Smith
, and
S.
Chu
, “
Single polymer dynamics in an elongational flow
,”
Science
276
(
5321
),
2016
(
1997
).
28.
V.
Kantsler
and
R. E.
Goldstein
, “
Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows
,”
Phys. Rev. Lett.
108
(
3
),
038103
(
2012
).
29.
D. J.
Mai
,
A.
Saadat
,
B.
Khomami
, and
C. M.
Schroeder
, “
Stretching dynamics of single comb polymers in extensional flow
,”
Macromolecules
51
(
4
),
1507
1517
(
2018
).
30.
S. J.
Hymel
,
H.
Lan
, and
D. B.
Khismatullin
, “
Elongation index as a sensitive measure of cell deformation in high-throughput microfluidic systems
,”
Biophys. J.
119
,
493
501
(
2020
).
31.
L.
Guillou
,
J. B.
Dahl
,
J.-M. G.
Lin
,
A. I.
Barakat
,
J.
Husson
,
S. J.
Muller
, and
S.
Kumar
, “
Measuring cell viscoelastic properties using a microfluidic extensional flow device
,”
Biophys. J.
111
(
9
),
2039
2050
(
2016
).
32.
Y. B.
Bae
,
H. K.
Jang
,
T. H.
Shin
,
G.
Phukan
,
T. T.
Tran
,
G.
Lee
,
W. R.
Hwang
, and
J. M.
Kim
, “
Microfluidic assessment of mechanical cell damage by extensional stress
,”
Lab Chip
16
(
1
),
96
103
(
2016
).
33.
Y.
Henon
,
G. J.
Sheard
, and
A.
Fouras
, “
Erythrocyte deformation in a microfluidic cross-slot channel
,”
RSC Adv.
4
(
68
),
36079
36088
(
2014
).
34.
S.
Cha
,
T.
Shin
,
S. S.
Lee
,
W.
Shim
,
G.
Lee
,
S. J.
Lee
,
Y.
Kim
, and
J. M.
Kim
, “
Cell stretching measurement utilizing viscoelastic particle focusing
,”
Anal. Chem.
84
(
23
),
10471
10477
(
2012
).
35.
H. T. K.
Tse
,
D. R.
Gossett
,
Y. S.
Moon
,
M.
Masaeli
,
M.
Sohsman
,
Y.
Ying
,
K.
Mislick
,
R. P.
Adams
,
J.
Rao
, and
D.
Di Carlo
, “
Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping
,”
Sci. Transl. Med.
5
(
212
),
212ra163
(
2013
).
36.
D. R.
Gossett
,
H. T. K.
Tse
,
S. A.
Lee
,
Y.
Ying
,
A. G.
Lindgren
,
O. O.
Yang
,
J.
Rao
,
A. T.
Clark
, and
D.
Di Carlo
, “
Hydrodynamic stretching of single cells for large population mechanical phenotyping
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
20
),
7630
7635
(
2012
).
37.
S. C.
Hur
,
N. K.
Henderson-Maclennan
,
E. R. B.
McCabe
, and
D.
Di Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
(
5
),
912
920
(
2011
).
38.
D.
Kumar
,
C. M.
Richter
, and
C. M.
Schroeder
, “
Conformational dynamics and phase behavior of lipid vesicles in a precisely controlled extensional flow
,”
Soft Matter
16
(
2
),
337
347
(
2020
).
39.
E. M.
Johnson-Chavarria
,
U.
Agrawal
,
M.
Tanyeri
,
T. E.
Kuhlman
, and
C. M.
Schroeder
, “
Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution
,”
Lab Chip
14
(
15
),
2688
2697
(
2014
).
40.
R.
Dylla-Spears
,
J. E.
Townsend
,
L.
Jen-Jacobson
,
L. L.
Sohn
, and
S. J.
Muller
, “
Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point
,”
Lab Chip
10
(
12
),
1543
1549
(
2010
).
41.
W.
Xu
and
S. J.
Muller
, “
Exploring both sequence detection and restriction endonuclease cleavage kinetics by recognition site via single-molecule microfluidic trapping
,”
Lab Chip
11
(
3
),
435
442
(
2011
).
42.
W.
Xu
and
S. J.
Muller
, “
Polymer-monovalent salt-induced DNA compaction studied via single-molecule microfluidic trapping
,”
Lab Chip
12
(
3
),
647
651
(
2012
).
43.
A.
Mustafa
,
A.
Erten
,
R. M. A.
Ayaz
,
O.
Kaylllloglu
,
A.
Eser
,
M.
Eryürek
,
M.
Irfan
,
M.
Muradoglu
,
M.
Tanyeri
, and
A.
Kiraz
, “
Enhanced dissolution of liquid microdroplets in the extensional creeping flow of a hydrodynamic trap
,”
Langmuir
32
(
37
),
9460
9467
(
2016
).
44.
S.
Narayan
,
D. B.
Moravec
,
A. J.
Dallas
, and
C. S.
Dutcher
, “
Droplet shape relaxation in a four-channel microfluidic hydrodynamic trap
,”
Phys. Rev. Fluids
5
(
11
),
113603
(
2020
).
45.
S.
Narayan
,
I.
Makhnenko
,
D. B.
Moravec
,
B. G.
Hauser
,
A. J.
Dallas
, and
C. S.
Dutcher
, “
Insights into the microscale coalescence behavior of surfactant-stabilized droplets using a microfluidic hydrodynamic trap
,”
Langmuir
36
(
33
),
9827
9842
(
2020
).
46.
F.
Akbaridoust
,
J.
Philip
,
D. R. A.
Hill
, and
I.
Marusic
, “
Simultaneous micro-PIV measurements and real-time control trapping in a cross-slot channel
,”
Exp. Fluids
59
(
12
),
183
(
2018
).
47.
F.
Akbaridoust
,
J.
Philip
, and
I.
Marusic
, “
Assessment of a miniature four-roll mill and a cross-slot microchannel for high-strain-rate stagnation point flows
,”
Meas. Sci. Technol.
29
(
4
),
045302
(
2018
).
48.
A.
Shenoy
,
D.
Kumar
,
S.
Hilgenfeldt
, and
C. M.
Schroeder
, “
Flow topology during multiplexed particle manipulation using a stokes trap
,”
Phys. Rev. Appl.
12
(
5
),
054010
(
2019
).
49.
A.
Shenoy
,
C. V.
Rao
, and
C. M.
Schroeder
, “
Stokes trap for multiplexed particle manipulation and assembly using fluidics
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
15
),
3976
3981
(
2016
).
50.
D.
Kumar
,
A.
Shenoy
,
S.
Li
, and
C. M.
Schroeder
, “
Orientation control and nonlinear trajectory tracking of colloidal particles using microfluidics
,”
Phys. Rev. Fluids
4
(
11
),
114203
(
2019
).
51.
W.-Z.
Fang
,
T.
Xiong
,
O. S.
Pak
, and
L.
Zhu
, “
Data‐driven intelligent manipulation of particles in microfluidics
,”
Adv. Sci.
10
(
5
),
2205382
(
2023
).
52.
S. J.
Haward
, “
Microfluidic extensional rheometry using stagnation point flow
,”
Biomicrofluidics
10
(
4
),
043401
(
2016
).
53.
J. A.
Odell
and
S. P.
Carrington
, “
Extensional flow oscillatory rheometry
,”
J. Non-Newtonian Fluid Mech.
137
(
1
),
110
120
(
2006
).
54.
K.
Zografos
,
S. J.
Haward
, and
M. S. N.
Oliveira
, “
Optimised multi-stream microfluidic designs for controlled extensional deformation
,”
Microfluid. Nanofluid.
23
(
12
),
131
(
2019
).
55.
F. J.
Galindo-Rosales
,
M. S. N.
Oliveira
, and
M. A.
Alves
, “
Optimized cross-slot microdevices for homogeneous extension
,”
RSC Adv.
4
(
15
),
7799
7804
(
2014
).
56.
S. J.
Haward
,
M. S. N.
Oliveira
,
M. A.
Alves
, and
G. H.
McKinley
, “
Optimized cross-slot flow geometry for microfluidic extensional rheometry
,”
Phys. Rev. Lett.
109
(
12
),
128301
(
2012
).

Supplementary Material

You do not currently have access to this content.