Stenosis in the internal carotid arteries is a serious cardiovascular condition. It is well-reported that low and oscillatory wall shear stress enhances the risk of stenosis progression. However, the effects of increased heart rates in highly stenosed arteries are not well explored. A detailed understanding of the flow features and stress distribution in stenosed carotid arteries at different heart rates may help clinicians to prescribe better exercise schedules for patients. In this study, we probe the effects of elevated heart rates on the hemodynamics in healthy and stenosed carotid arterial geometries using an immersed boundary method-based computational framework. Our results reveal that a strong recirculation, secondary velocity, and oscillatory shear index (OSI) zone develop inside a severely stenosed carotid artery at normal heart rate. Higher heart rates may potentially improve arterial health by reducing OSI only for the healthy and mild stenosis carotid arteries. However, the increased heart rates worsen the arterial health of severely stenosed arteries by onsetting flow instabilities, enhancing the spread and severity of the recirculation zone and the magnitude of the secondary velocity, the pressure drops across the stenosis, and the spread of high OSI (≥0.2) zone downstream. Furthermore, in the case of severe stenosis, the wall shear stress at the stenosis throat rises significantly, which can contribute to plaque rupture and thrombus development. Here, we report in detail the behavior of stress levels and pressure fluctuations in the carotid artery model at different stenosis levels for normal and elevated heart rates.

1.
E.
Falk
, “
Pathogenesis of atherosclerosis
,”
J. Am. Coll. Cardiol.
47
(
8 Suppl
),
C7
(
2006
).
2.
M.
Rafieian-Kopaei
,
M.
Setorki
,
M.
Doudi
,
A.
Baradaran
, and
H.
Nasri
, “
Atherosclerosis: Process, indicators, risk factors and new hopes
,”
Int. J. Prev. Med.
5
(
8
),
927
(
2014
).
3.
W.
Liao
,
T. S.
Lee
, and
H. T.
Low
, “
Numerical studies of physiological pulsatile flow through constricted tube
,”
Int. J. Numer. Methods Heat Fluid Flow
14
(
5
),
689
713
(
2004
).
4.
Y. M.
Go
,
D. J.
Son
,
H.
Park
,
M.
Orr
,
L.
Hao
,
W.
Takabe
,
S.
Kumar
,
D. W.
Kang
,
C. W.
Kim
,
H.
Jo
, and
D. P.
Jones
, “
Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei
,”
PLoS One
9
(
9
),
e108346
(
2014
).
5.
S.
Kumar
,
C. W.
Kim
,
R. D.
Simmons
, and
H.
Jo
, “
Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis mechanosensitive athero-miRs
,”
Arterioscler., Thromb., Vasc. Biol.
34
(
10
),
2206
(
2014
).
6.
X.
Kong
,
X.
Qu
,
B.
Li
,
Z.
Wang
,
Y.
Chao
,
X.
Jiang
,
W.
Wu
, and
S. L.
Chen
, “
Modulation of low shear stress-induced eNOS multi-site phosphorylation and nitric oxide production via protein kinase and ERK1/2 signaling
,”
Mol. Med. Rep.
15
(
2
),
908
(
2017
).
7.
K. S.
Cunningham
and
A. I.
Gotlieb
, “
The role of shear stress in the pathogenesis of atherosclerosis
,”
Lab. Invest.
85
(
1
),
9
(
2005
).
8.
J. B.
Mendieta
,
D.
Fontanarosa
,
J.
Wang
,
P. K.
Paritala
,
T.
McGahan
,
T.
Lloyd
, and
Z.
Li
, “
The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries
,”
Biomech. Model. Mechanobiol.
19
(
5
),
1477
(
2020
).
9.
H.
Gharahi
,
B. A.
Zambrano
,
D. C.
Zhu
,
J. K.
DeMarco
, and
S.
Baek
, “
Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging
,”
Int. J. Adv. Eng. Sci. Appl. Math.
8
(
1
),
46
(
2016
).
10.
Y.
Chen
,
X.
Yang
,
A. J.
Iskander
, and
P.
Wang
, “
On the flow characteristics in different carotid arteries
,”
Phys. Fluids
32
(
10
),
101902
(
2020
).
11.
M. S.
Nagargoje
,
D. K.
Mishra
, and
R.
Gupta
, “
Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels
,”
Phys. Fluids
33
(
7
),
071904
(
2021
).
12.
N. C.
Zalud
,
K. V.
Bulusu
, and
M. W.
Plesniak
, “
Shear stress metrics associated with pro-atherogenic high-risk anatomical features in a carotid artery bifurcation model
,”
Clin. Biomech.
105
,
105956
(
2023
).
13.
M.
Nagargoje
and
R.
Gupta
, “
Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation
,”
Comput. Methods Programs Biomed.
192
,
105440
(
2020
).
14.
M.
Albadawi
,
Y.
Abuouf
,
S.
Elsagheer
,
S.
Ookawara
, and
M.
Ahmed
, “
Predicting the onset of consequent stenotic regions in carotid arteries using computational fluid dynamics
,”
Phys. Fluids
33
(
12
),
123106
(
2021
).
15.
B.
Zhang
,
P.
Zhu
,
Z.
Liu
,
L.
Yang
,
Z.
Song
, and
W.
Zhu
, “
Hemodynamic analysis of carotid endarterectomy
,”
Phys. Fluids
35
(
1
),
011901
(
2023
).
16.
A. H.
Hegde
,
S. R.
Bhat
,
L.
Rakesh
, and
K.
Prakashini
, “
A computational fluid dynamics study on patient-specific bifurcated carotid artery
,”
Eng. Sci.
19
,
243
252
(
2022
).
17.
M.
Nagargoje
and
R.
Gupta
, “
Effect of asymmetry on the flow behavior in an idealized arterial bifurcation
,”
Comput. Methods Biomech. Biomed. Eng.
23
(
6
),
232
(
2020
).
18.
H.
Asgharzadeh
and
I.
Borazjani
, “
Effects of Reynolds and Womersley numbers on the hemodynamics of intracranial aneurysms
,”
Comput. Math. Methods Med.
2016
,
7412926
.
19.
J. P.
Simpson
and
J. H.
Leylek
, “
The Influence of Womersley number on non-Newtonian effects: Transient computational study of blood rheology
,”
J. Fluids Eng.
145
(
1
),
011206
(
2023
).
20.
M.
Owais
and
A. Y.
Usmani
, “
Flow hemodynamics within a bent asymmetric stenosed artery
,”
J. Flow Visualization Image Process.
26
(
4
),
335
(
2019
).
21.
P. D.
Thompson
,
D.
Buchner
,
I. L.
Piña
,
G. J.
Balady
,
M. A.
Williams
,
B. H.
Marcus
,
K.
Berra
,
S. N.
Blair
,
F.
Costa
,
B.
Franklin
,
G. F.
Fletcher
,
N. F.
Gordon
,
R. R.
Pate
,
B. L.
Rodriguez
,
A. K.
Yancey
, and
N. K.
Wenger
, “
Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A statement from the council on clinical cardiology (subcommittee on exercise, rehabilitation, and prevention) and the council on nutrition, physical activity, and metabolism (subcommittee on physical activity)
,”
Circulation
107
(
24
),
3109
(
2003
).
22.
R.
González-Camarena
,
S.
Carrasco-Sosa
,
R.
Román-Ramos
,
M. J.
Gaitán-González
,
V.
Medina-Bañuelos
, and
J.
Azpiroz-Leehan
, “
Effect of static dynamic exercise on heart and blood pressure variabilities
,”
Med. Sci. Sports Exercise
32
(
10
),
1719
1728
(
2000
).
23.
C. K.
Roberts
,
A. K.
Chen
, and
R. J.
Barnard
, “
Effect of a short-term diet and exercise intervention in youth on atherosclerotic risk factors
,”
Atherosclerosis
191
(
1
),
98
106
(
2007
).
24.
X.
He
and
X.
Yang
, “
Effects of exercise on flow characteristics in human carotids
,”
Phys. Fluids
34
(
1
),
011909
(
2022
).
25.
G. D.
Giannoglou
,
Y. S.
Chatzizisis
,
C.
Zamboulis
,
G. E.
Parcharidis
,
D. P.
Mikhailidis
, and
G. E.
Louridas
, “
Elevated heart rate and atherosclerosis: An overview of the pathogenetic mechanisms
,”
Int. J. Cardiol.
126
(
3
),
302
312
(
2008
).
26.
J. B.
Gordon
,
P.
Ganz
,
E. G.
Nabel
,
R. D.
Fish
,
J.
Zebede
,
G. H.
Mudge
,
R. W.
Alexander
, and
A. P.
Selwyn
, “
Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise
,”
J. Clin. Invest.
83
(
6
),
1946
(
1989
).
27.
R.
Rauramaa
,
P.
Halonen
,
S. B.
Väisänen
,
T. A.
Lakka
,
A.
Schmidt-Trucksäss
,
A.
Berg
,
I. M.
Penttilä
,
T.
Rankinen
, and
C.
Bouchard
, “
Effects of aerobic physical exercise on inflammation and atherosclerosis in men: The DNASCO study. A six-year randomized, controlled trial
,”
Ann. Intern. Med.
140
(
12
),
1007
(
2004
).
28.
P.
Han
,
W.
Zhang
,
L.
Kang
,
Y.
Ma
,
L.
Fu
,
L.
Jia
,
H.
Yu
,
X.
Chen
,
L.
Hou
,
L.
Wang
,
X.
Yu
,
M.
Kohzuki
, and
Q.
Guo
, “Clinical evidence of exercise benefits for stroke,” in
Exercise for Cardiovascular Disease Prevention and Treatment
, Advances in Experimental Medicine and Biology Vol. 1000, edited by
J.
Xiao
(
Springer
,
Singapore
,
2017
), pp.
131
151
.
29.
T.
Sood
,
S.
Roy
, and
M.
Pathak
, “
Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models
,”
Math. Biosci.
298
,
1
18
(
2018
).
30.
J.
Song
,
S.
Kouidri
, and
F.
Bakir
, “
Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis
,”
Biocybern. Biomed. Eng.
41
(
1
),
142
155
(
2021
).
31.
M.
Owais
,
A. Y.
Usmani
, and
K.
Muralidhar
, “
Effect of a bend on vortex formation and evolution in a three-dimensional stenosed geometry during pulsatile flow
,”
Phys. Fluids
35
(
3
),
031906
(
2023
).
32.
D.
Lopes
,
H.
Puga
,
J. C.
Teixeira
, and
S. F.
Teixeira
, “
Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies
,”
Int. J. Mech. Sci.
160
,
209
(
2019
).
33.
J.
Moradicheghamahi
,
J.
Sadeghiseraji
, and
M.
Jahangiri
, “
Numerical solution of the pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery
,”
Int. J. Mech. Sci.
150
,
393
(
2019
).
34.
P. M.
Khan
,
A.
Raj
,
M. I.
Alam
,
S.
Chakraborty
, and
S.
Roy
, “
Prediction of vortex structures in pulsatile flow through S-bend arterial geometry with different stenosis levels
,”
Biocybern. Biomed. Eng.
43
(
1
),
298
312
(
2023
).
35.
H.
Shahzad
,
X.
Wang
,
A.
Ghaffari
,
K.
Iqbal
,
M. B.
Hafeez
,
M.
Krawczuk
, and
W.
Wojnicz
, “
Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls
,”
Sci. Rep.
12
(
1
),
12219
(
2022
).
36.
N.
Kumar
,
S. M. A.
Khader
,
R.
Pai
,
S. H.
Khan
, and
P. A.
Kyriacou
, “
Fluid structure interaction study of stenosed carotid artery considering the effects of blood pressure
,”
Int. J. Eng. Sci.
154
,
103341
(
2020
).
37.
G.
Liu
,
J.
Wu
,
W.
Huang
,
W.
Wu
,
H.
Zhang
,
K. K. L.
Wong
, and
D. N.
Ghista
, “
Numerical simulation of flow in curved coronary arteries with progressive amounts of stenosis using fluid-structure interaction modelling
,”
J. Med. Imaging Health Inf.
4
(
4
),
605
611
(
2014
).
38.
J. C.
Kohn
,
M. C.
Lampi
, and
C. A.
Reinhart-King
, “
Age-related vascular stiffening: Causes and consequences
,”
Front. Genet.
06
,
112
(
2015
).
39.
D. A.
Steinman
, “
Assumptions in modelling of large artery hemodynamics
,” in
Modeling of Physiological Flows
, MS&A—Modeling, Simulation and Applications Vol 5, edited by
D.
Ambrosi
,
A.
Quarteroni
, and
G.
Rozza
(
Springer
,
Milano
,
2012
), pp.
1
18
.
40.
A. L.
DiCarlo
,
D. W.
Holdsworth
, and
T. L.
Poepping
, “
Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry
,”
Med. Eng. Phys.
65
,
8
(
2019
).
41.
J.
Song
,
S.
Kouidri
, and
F.
Bakir
, “
Numerical study of hemodynamic and diagnostic parameters affected by stenosis in bifurcated artery
,”
Comput. Methods Biomech. Biomed. Eng.
23
(
12
),
894
(
2020
).
42.
S.
Uttam
,
P. M.
Khan
,
M. I.
Alam
, and
S.
Roy
, “
Behavior of wall shear stress near carotid artery bifurcation at elevated pulse rates
,”
J. Flow Visualization Image Process.
27
(
3
),
249
(
2020
).
43.
R. F.
Smith
,
B. K.
Rutt
,
A. J.
Fox
,
R. N.
Rankin
, and
D. W.
Holdsworth
, “
Geometric characterization of stenosed human carotid arteries
,”
Acad. Radiol.
3
(
11
),
898
(
1996
).
44.
P. J.
Carreau
, “
Rheological equations from molecular network theories
,”
Trans. Soc. Rheol.
16
(
1
),
99
127
(
1972
).
45.
R. F.
Dutra
,
F. S. F.
Zinani
,
L. A. O.
Rocha
, and
C.
Biserni
, “
Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design
,”
Comput. Methods Programs Biomed.
201
,
105944
(
2021
).
46.
A.
Razavi
,
E.
Shirani
, and
M. R.
Sadeghi
, “
Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models
,”
J. Biomech.
44
(
11
),
2021
(
2011
).
47.
B. M.
Johnston
,
P. R.
Johnston
,
S.
Corney
, and
D.
Kilpatrick
, “
Non-Newtonian blood flow in human right coronary arteries: Steady state simulations
,”
J. Biomech.
37
(
5
),
709
(
2004
).
48.
M.
Jahangiri
,
M.
Saghafian
, and
M. R.
Sadeghi
, “
Numerical simulation of non-Newtonian models effect on hemodynamic factors of pulsatile blood flow in elastic stenosed artery
,”
J. Mech. Sci. Technol.
31
(
2
),
1003
1013
(
2017
).
49.
S.
Kamangar
,
N.
Ameer Ahamad
,
N.
Nik-Ghazali
,
A. E.
Anqi
,
A.
Algahtani
,
C.
Ahamed Saleel
,
S.
Javed
,
V.
Tirth
, and
T. M.
Yunus Khan
, “
The influence of multi-stenosis in the left coronary artery subjected to the variable blood flow rate
,”
Front. Eng. Built Environ.
1
(
1
),
97
106
(
2021
).
50.
X.
Liu
,
H.
Zhang
,
L.
Ren
,
H.
Xiong
,
Z.
Gao
,
P.
Xu
,
W.
Huang
, and
W.
Wu
, “
Functional assessment of the stenotic carotid artery by CFD-based pressure gradient evaluation
,”
Am. J. Physiol.
311
(
3
),
H645
H653
(
2016
).
51.
D. W.
Holdsworth
,
C. J. D.
Norley
,
R.
Frayne
,
D. A.
Steinman
, and
B. K.
Rutt
, “
Characterization of common carotid artery blood-flow waveforms in normal human subjects
,”
Physiol. Meas.
20
(
3
),
219
(
1999
).
52.
I.
Orlanski
, “
A simple boundary condition for unbounded hyperbolic flows
,”
J. Comput. Phys.
21
(
3
),
251
(
1976
).
53.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
(
12
),
2182
(
1965
).
54.
A.
Raj
,
P. M.
Khan
,
M.
Alam
,
A.
Prakash
, and
S.
Roy
, “
A GPU-accelerated sharp interface immersed boundary method for versatile geometries
,”
J. Comput. Phys.
478
,
111985
(
2023
).
55.
M. I.
Alam
,
A.
Raj
,
P. M.
Khan
,
S.
Kumar
, and
S.
Roy
, “
Numerical simulation of flow of a shear-thinning Carreau fluid over a transversely oscillating cylinder
,”
J. Fluid Mech.
921
,
A23
(
2021
).
56.
D.
Liepsch
,
S.
Moravec
,
A. K.
Rastogi
, and
N. S.
Vlachos
, “
Measurement and calculations of laminar flow in a ninety degree bifurcation
,”
J. Biomech.
15
(
7
),
473
(
1982
).
57.
C.
Abugattas
,
A.
Aguirre
,
E.
Castillo
, and
M.
Cruchaga
, “
Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models
,”
Appl. Math. Modell.
88
,
529
549
(
2020
).
58.
Z.
Keshavarz-Motamed
and
L.
Kadem
, “
3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta
,”
Med. Eng. Phys.
33
(
3
),
315
(
2011
).
59.
N. A.
Buchmann
,
M. C.
Jermy
, and
C. V.
Nguyen
, “
Experimental investigation of carotid artery haemodynamics in an anatomically realistic model
,”
Int. J. Exp. Comput. Biomech.
1
(
2
),
172
192
(
2009
).
60.
C.
Cox
,
M. R.
Najjari
, and
M. W.
Plesniak
, “
Three-dimensional vortical structures and wall shear stress in a curved artery model
,”
Phys. Fluids
31
(
12
),
121903
(
2019
).
61.
W. R.
Dean
, “
LXXII. The stream-line motion of fluid in a curved pipe (second paper)
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
5
(
30
),
673
(
1928
).
62.
J.
Dunn
,
S.
Thabet
, and
H.
Jo
, “
Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis
,”
Arterioscler., Thromb., Vasc. Biol.
35
(
7
),
1562
1569
(
2015
).
63.
J.
Dunn
,
H.
Qiu
,
S.
Kim
,
D.
Jjingo
,
R.
Hoffman
,
C. W.
Kim
,
I.
Jang
,
D. J.
Son
,
D.
Kim
,
C.
Pan
,
Y.
Fan
,
I. K.
Jordan
, and
H.
Jo
, “
Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis
,”
J. Clin. Invest.
124
(
7
),
3187
(
2014
).
64.
C. L.
Karthika
,
S.
Ahalya
,
N.
Radhakrishnan
,
C. C.
Kartha
, and
S.
Sumi
, “
Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases
,”
Mol. Cell. Biochem.
476
(
1
),
125
(
2021
).
65.
A. M.
Malek
,
S. L.
Alper
, and
S.
Izumo
, “
Hemodynamic shear stress and its role in atherosclerosis
,”
J. Am. Med. Assoc.
282
(
21
),
2035
2042
(
1999
).
66.
P.
Eshtehardi
,
A. J.
Brown
,
A.
Bhargava
,
C.
Costopoulos
,
O. Y.
Hung
,
M. T.
Corban
,
H.
Hosseini
,
B. D.
Gogas
,
D. P.
Giddens
, and
H.
Samady
, “
High wall shear stress and high-risk plaque: An emerging concept
,”
Int. J. Cardiovasc. Imaging
33
(
7
),
1089
1099
(
2017
).
67.
A.
Kumar
,
E. W.
Thompson
,
A.
Lefieux
,
D. S.
Molony
,
E. L.
Davis
,
N.
Chand
,
S.
Fournier
,
H. S.
Lee
,
J.
Suh
,
K.
Sato
,
Y. A.
Ko
,
D.
Molloy
,
K.
Chandran
,
H.
Hosseini
,
S.
Gupta
,
A.
Milkas
,
B.
Gogas
,
H. J.
Chang
,
J. K.
Min
,
W. F.
Fearon
,
A.
Veneziani
,
D. P.
Giddens
,
S. B.
King
,
B.
De Bruyne
, and
H.
Samady
, “
High coronary shear stress in patients with coronary artery disease predicts myocardial infarction
,”
J. Am. Coll. Cardiol.
72
(
16
),
1926
(
2018
).
68.
M.
Colombo
,
M.
Bologna
,
M.
Garbey
,
S.
Berceli
,
Y.
He
,
J. F.
Rodriguez Matas
,
F.
Migliavacca
, and
C.
Chiastra
, “
Computing patient-specific hemodynamics in stented femoral artery models obtained from computed tomography using a validated 3D reconstruction method
,”
Med. Eng. Phys.
75
,
23
(
2020
).
69.
U.
Morbiducci
,
R.
Ponzini
,
M.
Grigioni
, and
A.
Redaelli
, “
Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study
,”
J. Biomech.
40
(
3
),
519
(
2007
).
70.
C.
Chiastra
,
F.
Iannaccone
,
M. J.
Grundeken
,
F. J. H.
Gijsen
,
P.
Segers
,
M.
De Beule
,
P. W.
Serruys
,
J. J.
Wykrzykowska
,
A. F. W.
van der Steen
, and
J. J.
Wentzel
, “
Coronary fractional flow reserve measurements of a stenosed side branch: A computational study investigating the influence of the bifurcation angle
,”
BioMed. Eng. OnLine
15
(
1
),
91
(
2016
).
71.
F. P.
Glor
,
B.
Ariff
,
A. D.
Hughes
,
L. A.
Crowe
,
P. R.
Verdonck
,
D. C.
Barratt
,
S. A. M. G.
Thom
,
D. N.
Firmin
, and
X. Y.
Xu
, “
Image-based carotid flow reconstruction: A comparison between MRI and ultrasound
,”
Physiol. Meas.
25
(
6
),
1495
(
2004
).
72.
Y. S.
Chatzizisis
,
A. U.
Coskun
,
M.
Jonas
,
E. R.
Edelman
,
C. L.
Feldman
, and
P. H.
Stone
, “
Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Molecular, cellular, and vascular behavior
,”
J. Am. Coll. Cardiol.
49
(
25
),
2379
(
2007
).
73.
S. F.
Sia
,
X.
Zhao
,
R.
Li
,
Y.
Zhang
,
W.
Chong
,
L.
He
, and
Y.
Chen
, “
Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow
,”
Proc. Inst. Mech. Eng., Part H
230
(
11
),
1051
(
2016
).
74.
S. F.
Sia
,
X.
Zhao
,
Y.
Yu
, and
Y.
Zhang
, “
Multiphase particle-in-cell simulation in severe internal carotid artery stenosis
,”
Powder Technol.
358
,
62
(
2019
).
75.
F.
Cassot
,
V.
Vergeur
,
P.
Bossuet
,
B.
Hillen
,
M.
Zagzoule
, and
J. P.
Marc-Vergnes
, “
Effects of anterior communicating artery diameter on cerebral hemodynamics in internal carotid artery disease: A model study
,”
Circulation
92
(
10
),
3122
(
1995
).
76.
S. E.
Lee
,
S. W.
Lee
,
P. F.
Fischer
,
H. S.
Bassiouny
, and
F.
Loth
, “
Direct numerical simulation of transitional flow in a stenosed carotid bifurcation
,”
J. Biomech.
41
(
11
),
2551
(
2008
).
77.
R. F.
Dutra
,
F. S. F.
Zinani
,
L. A. O.
Rocha
, and
C.
Biserni
, “
Constructal design of an arterial bypass graft
,”
Heat Transfer
49
(
7
),
4019
(
2020
).
78.
C. A.
Pickett
,
J. L.
Jackson
,
B. A.
Hemann
, and
J. E.
Atwood
, “
Carotid bruits and cerebrovascular disease risk: A meta-analysis
,”
Stroke
41
(
10
),
2295
2302
(
2010
).
79.
P. A. G.
Sandercock
and
E.
Kavvadia
, “
The carotid bruit
,”
Pract. Neurol.
2
(
4
),
221
224
(
2002
).
80.
A.
Lucerna
and
J.
Espinosa
,
Carotid Bruit
(
StatPearls Publishing
,
Treasure Island, FL
,
2019
).
81.
S.
Möhlenkamp
,
D.
Böse
,
A. A.
Mahabadi
,
G.
Heusch
, and
R.
Erbel
, “
On the paradox of exercise: Coronary atherosclerosis in an apparently healthy marathon runner
,”
Nat. Clin. Pract. Cardiovasc. Med.
4
(
7
),
396
401
(
2007
).
82.
Y. J.
Sae
,
B.
Fernhall
,
K. S.
Heffernan
,
M.
Kang
,
M. K.
Lee
,
Y. H.
Choi
, and
H. P.
Won
, “
Chronotropic response to exercise testing is associated with carotid atherosclerosis in healthy middle-aged men
,”
Eur. Heart J.
27
(
8
),
954
959
(
2006
).
83.
Y. J.
Sae
,
B.
Fernhall
,
K. S.
Heffernan
,
M.
Kang
,
M. K.
Lee
,
H. C.
Yoon
,
P. H.
Kyung
,
S. A.
Eui
, and
H. P.
Won
, “
Exaggerated blood pressure response to exercise is associated with carotid atherosclerosis in apparently healthy men
,”
J. Hypertens.
24
(
5
),
881
(
2006
).
84.
J. D.
Pollock
,
I. V.
Murray
,
S. J.
Bordes
, and
A. N.
Makaryus
, “Physiology, cardiovascular hemodynamics, in
StatPearls [Internet]
(
StatPearls Publishing
,
Treasure Island, FL
,
2023
),” available from https://www.ncbi.nlm.nih.gov/books/NBK470310/.
85.
A. S.
Khan
,
A.
Shahzad
,
M.
Zubair
,
A.
Alvi
, and
R.
Gul
, “
Personalized 0D models of normal and stenosed carotid arteries
,”
Comput. Methods Programs Biomed.
200
,
105888
(
2021
).
You do not currently have access to this content.