In this article, we propose a theoretical model leveraging the analogy between fluid and electric variables to investigate the relation among aqueous humor (AH) circulation and drainage and intraocular pressure (IOP), the principal established risk factor of severe neuropathologies of the optic nerve such as glaucoma. IOP is the steady-state result of the balance among AH secretion (AHs), circulation (AHc), and drainage (AHd). AHs are modeled as a given volumetric flow rate electrically corresponding to an input current source. AHc is modeled by the series of two linear hydraulic conductances (HCs) representing the posterior and anterior chambers. AHd is modeled by the parallel of three HCs: a linear HC for the conventional adaptive route (ConvAR), a nonlinear HC for the hydraulic component of the unconventional adaptive route (UncAR), and a nonlinear HC for the drug-dependent component of the UncAR. The proposed model is implemented in a computational virtual laboratory to study the value attained by the IOP under physiological and pathological conditions. Simulation results (i) confirm the conjecture that the UncAR acts as a relief valve under pathological conditions, (ii) indicate that the drug-dependent AR is the major opponent to IOP increase in the case of elevated trabecular meshwork resistance, and (iii) support the use of the model as a quantitative tool to complement in vivo studies and help design and optimize medications for ocular diseases.

1.
R. F.
Brubaker
, “
Flow of aqueous humor in humans
,”
Invest. Ophthalmol. Visual Sci.
32
,
3145
3166
(
1991
).
2.
J. W.
Kiel
, “
Physiology of the intraocular pressure
,” in
Pathophysiology of the Eye: Glaucoma
, edited by
J.
Feher
(
Akademiai Kiado
,
Budapest
,
1998
). Vol.
4
, pp.
109
144
.
3.
J. W.
Kiel
,
M.
Hollingsworth
,
R.
Rao
,
M.
Chen
, and
H. A.
Reitsamer
, “
Ciliary blood flow and aqueous humor production
,”
Prog. Retinal Eye Res.
30
,
1
17
(
2011
).
4.
C. B.
Toris
,
G.
Tye
, and
P.
Pattabiraman
, “
Changes in parameters of aqueous humor dynamics throughout life
,” in
Ocular Fluid Dynamics: Anatomy, Physiology, Imaging Techniques, and Mathematical Modeling
, edited by
G.
Guidoboni
,
A.
Harris
, and
R.
Sacco
(
Springer International Publishing
,
Cham
,
2019
), pp.
161
190
.
5.
R. A.
Moses
, “
Intraocular pressure
,” in
Adler's Physiology of the Eye: Clinical Application
, edited by
R. A.
Moses
and
W. M.
Hart
, Jr.
(
Mosby
,
St. Louis
,
1987
), pp.
223
245
.
6.
A. L.
Coleman
and
S.
Miglior
, “
Risk factors for glaucoma onset and progression
,”
Surv. Ophthalmol.
53
(
Suppl. 1
),
S3
S10
(
2008
).
7.
N. A.
Loewen
and
A. P.
Tanna
, “
Glaucoma risk factors: Intraocular pressure
,” in
The Glaucoma Book: A Practical, Evidence-Based Approach to Patient Care
, edited by
P. N.
Schacknow
and
J. R.
Samples
(
Springer
,
New York
,
2010
), pp.
35
50
.
8.
B. E.
Prum
, Jr.
,
L. F.
Rosenberg
,
S. J.
Gedde
,
S. L.
Mansberger
,
J. D.
Stein
,
S. E.
Moroi
,
L. W.
Herndon
, Jr.
,
M. C.
Lim
, and
R. D.
Williams
, “
Primary open-angle glaucoma preferred practice pattern guidelines
,”
Ophthalmology
123
,
P41
P111
(
2015
).
9.
R.
Sacco
,
G.
Guidoboni
, and
A. G.
Mauri
,
A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences
(
Elsevier, Academic Press
,
Cambridge, MA
,
2019
).
10.
A. B.
Friedland
, “
A hydrodynamic model of aqueous flow in the posterior chamber of the eye
,”
Bull. Math. Biol.
40
,
223
235
(
1978
).
11.
P. B.
Liton
and
P.
Gonzalez
, “
Stress response of the trabecular meshwork
,”
J. Glaucoma
17
,
378
385
(
2008
).
12.
K.
Wang
,
G.
Li
,
A. T.
Read
,
I.
Navarro
,
A. K.
Mitra
,
W. D.
Stamer
,
T.
Sulchek
, and
C. R.
Ethier
, “
The relationship between outflow resistance and trabecular meshwork stiffness in mice
,”
Sci. Rep.
8
,
5848
(
2018
).
13.
C.
Costagliola
,
R.
dell'Omo
,
L.
Agnifili
,
S.
Bartollino
,
A. M.
Fea
,
M. G.
Uva
,
L.
Zeppa
, and
L.
Mastropasqua
, “
How many aqueous humor outflow pathways are there?
,”
Surv. Ophthalmol.
65
,
144
170
(
2020
).
14.
M.
Johnson
and
K.
Erickson
, “
Mechanisms and routes of aqueous humor drainage
,” in
Principles and Practice of Ophthalmology
, edited by
D. M.
Albert
and
F. A.
Jakobiec
(
Saunders
,
Philadelphia
,
2000
), pp.
2577
2595
.
15.
M.
Johnson
,
J. W.
McLaren
, and
D. R.
Overby
, “
Unconventional aqueous humor outflow: A review
,”
Exp. Eye Res.
158
,
94
111
(
2017
).
16.
K.
Emi
,
J. E.
Pederson
, and
C. B.
Toris
, “
Hydrostatic pressure of the suprachoroidal space
,”
Invest. Ophthalmol. Visual Sci.
30
,
233
238
(
1989
).
17.
J. A.
Ferreira
,
P.
de Oliveira
,
P. M.
da Silva
, and
J. N.
Murta
, “
Numerical simulation of aqueous humor flow: From healthy to pathologic situations
,”
Appl. Math. Comput.
226
,
777
792
(
2014
).
18.
F.
McDonnell
,
W. M.
Dismuke
,
D. R.
Overby
, and
W. D.
Stamer
, “
Pharmacological regulation of outflow resistance distal to Schlemm's canal
,”
Am. J. Physiol. Cell Physiol.
315
,
C44
C51
(
2018
).
19.
C.
Vass
,
C.
Hirn
,
E.
Unger
,
W.
Mayr
,
M.
Georgopoulos
,
G.
Rainer
, and
S.
Richter–Mueksch
, “
Human aqueous humor viscosity in cataract, primary open angle glaucoma and pseudoexfoliation syndrome
,”
Invest. Ophthalmol. Visual Sci.
45
,
5030
(
2004
).
20.
W.
Wang
,
X.
Qian
,
H.
Song
,
M.
Zhang
, and
Z.
Liu
, “
Fluid and structure coupling analysis of the interaction between aqueous humor and iris
,”
Biomed. Eng. Online
15
(
Suppl. 2
),
133
(
2016
).
21.
G.
Raviola
and
E.
Raviola
, “
Intercellular junctions in the ciliary epithelium
,”
Invest. Ophthalmol. Visual Sci.
17
,
958
981
(
1978
).
22.
L.
Sala
,
A. G.
Mauri
,
R.
Sacco
,
D.
Messenio
,
G.
Guidoboni
, and
A.
Harris
, “
A theoretical study of aqueous humor secretion based on a continuum model coupling electrochemical and fluid-dynamical transmembrane mechanisms
,”
Commun. Appl. Math. Comput. Sci.
14
,
65
103
(
2019
).
23.
R.
Sacco
,
G.
Guidoboni
,
J.
Jerome
,
G.
Bonifazi
,
N.
Marazzi
,
A.
Verticchio Vercellin
,
M.
Lang
, and
A.
Harris
, “
A theoretical approach for the electrochemical characterization of ciliary epithelium
,”
Life
10
,
8
(
2020
).
24.
J.
Keener
and
J.
Sneyd
,
Mathematical Physiology: I: Cellular Physiology
(
Springer
,
New York
,
2009
).
25.
A.
Karimi
,
R.
Razaghi
,
S. M.
Rahmati
,
J. C.
Downs
,
T. S.
Acott
,
M. J.
Kelley
,
R. K.
Wang
, and
M.
Johnstone
, “
The effect of intraocular pressure load boundary on the biomechanics of the human conventional aqueous outflow pathway
,”
Bioengineering
9
,
672
(
2022
).
26.
A.
Quarteroni
,
R.
Sacco
, and
F.
Saleri
,
Numerical Mathematics
,
2nd ed.
, Texts in Applied Mathematics Vol. 37 (
Springer
,
Berlin, Heidelberg
,
2007
).
27.
The MathWorks, Inc.
,
MATLAB and Statistics Toolbox Release
(
The MathWorks, Inc
.,
Natick, MA
,
2012
).
28.
D. W.
Abu-Hassan
,
T. S.
Acott
, and
M. J.
Kelley
, “
The trabecular meshwork: A basic review of form and function
,”
J. Ocul. Biol.
2
,
22
(
2014
).
29.
A.
Subrizi
,
E. M.
del Amo
,
V.
Korzhikov-Vlakh
,
T.
Tennikova
,
M.
Ruponen
, and
A.
Urtti
, “
Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties
,”
Drug Discovery Today
24
,
1446
1457
(
2019
).
30.
D.
Eveleth
,
C.
Starita
, and
C.
Tressler
, “
A 4-week, dose-ranging study comparing the efficacy, safety and tolerability of latanoprost 75, 100 and 125 μg/mL to latanoprost 50 μg/mL (xalatan) in the treatment of primary open-angle glaucoma and ocular hypertension
,”
BMC Ophthalmol.
12
,
9
(
2012
).
31.
T. S.
Acott
,
M. J.
Kelley
,
K. E.
Keller
,
J. A.
Vranka
,
D. W.
Abu-Hassan
,
X.
Li
,
M.
Aga
, and
J. M.
Bradley
, “
Intraocular pressure homeostasis: Maintaining balance in a high-pressure environment
,”
J. Ocul. Pharmacol. Ther.
30
,
94
101
(
2014
).
32.
W.
Leydhecker
, “
Der intraokulare druck gesunder menschlicher augen
,”
Klin. Monatsbl Augenheilkd
133
,
662
(
1958
).
33.
A.
Bill
, “
Effects of atropine and pilocarpine on aqueous humour dynamics in cynomolgus monkeys (Macaca irus)
,”
Exp. Eye Res.
6
,
120
125
(
1967
).
34.
E.
Lütjen-Drecoll
and
E.
Tamm
, “
Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F
,”
Exp. Eye Res.
47
,
761
769
(
1988
).
35.
M. E.
Yablonski
, “
Some thoughts on the pressure dependence of uveoscleral flow
,”
J. Glaucoma
12
,
90
92
(
2003
).
36.
A.
Russo
,
I.
Riva
,
T.
Pizzolante
,
F.
Noto
, and
L.
Quaranta
, “
Latanoprost ophthalmic solution in the treatment of open angle glaucoma or raised intraocular pressure: A review
,”
Clin. Ophthalmol.
2
,
897
905
(
2008
).
37.
L.
Zhou
,
W.
Zhan
, and
X.
Wei
, “
Clinical pharmacology and pharmacogenetics of prostaglandin analogues in glaucoma
,”
Front. Pharmacol.
13
,
1015338
(
2022
).
38.
T.
Wang
,
L.
Cao
,
Q.
Jiang
, and
T.
Zhang
, “
Topical medication therapy for glaucoma and ocular hypertension
,”
Front. Pharmacol.
12
,
10
(
2021
).
39.
See https://www.maio-journal.com/index.php/MAIO for
Modeling and Artificial Intelligence in Ophthalmology (MAIO)
.
40.
Ocular Fluid Dynamics: Anatomy, Physiology, Imaging Techniques, and Mathematical Modeling, Modeling and Simulation in Science, Engineering and Technology
, edited by
G.
Guidoboni
,
A.
Harris
, and
R.
Sacco
(
Birkhauser Cham, Springer Nature
,
Switzerland AG
,
2019
).
41.
G.
Guidoboni
,
R. S.
Chong
,
N.
Marazzi
,
M. L.
Chee
,
J.
Wellington
,
E.
Lichtenegger
,
C.-Y.
Cheng
, and
A.
Harris
, “
A mechanism-driven algorithm for artificial intelligence in ophthalmology: Understanding glaucoma risk factors in the Singapore eye diseases study
,”
Invest. Ophthalmol. Visual Sci.
61
,
619
(
2020
).
42.
A. M.
Vicente
,
W.
Ballensiefen
, and
J. I.
Jonsson
, “
How personalised medicine will transform healthcare by 2030: The ICPerMed vision
,”
J. Transl. Med.
18
,
180
183
(
2020
).
43.
D.
Cela
,
F.
Brignole-Baudouin
,
A.
Labbé
, and
C.
Baudouin
, “
The trabecular meshwork in glaucoma: An inflammatory trabeculopathy?
,”
J. Fr. Ophtalmol.
44
,
e497
e517
(
2021
).
You do not currently have access to this content.