Modeling techniques are an essential complement to clinical studies of the retina, as they provide access to non-measurable parameters throughout the network and enable the simulation of controlled disturbances or pathologies. In this work, we propose the development of a patient-specific one-dimensional model of the arterial circulation in the retina. Our model is based on conservation laws and utilizes morphometric and velocimetric data obtained through clinical multimodal imaging to construct the network topology and impose realistic boundary conditions. Specifically, our model simulates blood flow from the central retina artery to the terminal smallest arterioles. To validate our model, we perform a sensitivity analysis and compare its results to published data. Finally, we use our model to investigate the hemodynamic consequences of focal stenosis on retinal arteries. Overall, our model provides a valuable tool for exploring the complex dynamics of retinal blood flow and their potential clinical implications.

1.
T. D.
Lamb
,
S. P.
Collin
, and
E. N.
Pugh
, Jr.
, “
Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup
,”
Nat. Rev. Neurosci.
8
,
960
976
(
2007
).
2.
G.
Guidoboni
,
R.
Sacco
,
M.
Szopos
,
L.
Sala
,
A. C.
Verticchio Vercellin
,
B.
Siesky
, and
A.
Harris
, “
Neurodegenerative disorders of the eye and of the brain: A perspective on their fluid-dynamical connections and the potential of mechanism-driven modeling
,”
Front. Neurosci.
14
,
566428
(
2020
).
3.
L.
Arnould
,
C.
Guenancia
,
C.
Binquet
,
C.
Delcourt
,
C.
Chiquet
,
V.
Daien
,
Y.
Cottin
,
A.
Bron
,
N.
Acar
, and
C.
Creuzot-Garcher
, “
Caractéristiques vasculaires rétiniennes: Modifications lors du vieillissement et en pathologie vasculaire systémique (cardiaque et cérébrale
),”
J. Fr. Ophtalmol.
45
,
104
118
(
2022
).
4.
A.
Stanton
,
B.
Wasan
,
A.
Cerutti
,
S.
Ford
,
R.
Marsh
,
P.
Sever
,
S.
Thom
, and
A.
Hughes
, “
Vascular network changes in the retina with age and hypertension
,”
J. Hypertens.
13
,
1724
1728
(
1995
).
5.
O.
Genevois
,
M.
Paques
,
M.
Simonutti
,
R.
Sercombe
,
J.
Seylaz
,
A.
Gaudric
,
J.-P.
Brouland
,
J.
Sahel
, and
E.
Vicaut
, “
Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats
,”
Invest. Ophthalmol. Visual Sci.
45
,
594
600
(
2004
).
6.
M.
Paques
,
O.
Baillart
,
O.
Genevois
,
A.
Gaudric
,
B. I.
Lévy
, and
J.
Sahel
, “
Systolodiastolic variations of blood flow during central retinal vein occlusion: Exploration by dynamic angiography
,”
Br. J. Ophthalmol.
89
,
1036
1040
(
2005
).
7.
C. Y.-L.
Cheung
,
M. K.
Ikram
,
C.
Sabanayagam
, and
T. Y.
Wong
, “
Retinal microvasculature as a model to study the manifestations of hypertension
,”
Hypertension
60
,
1094
1103
(
2012
).
8.
S.
Bonnin
,
V.
Krivosic
,
E.
Cognat
, and
R.
Tadayoni
, “
Visibility of blood flow on optical coherence tomography angiography in a case of branch retinal artery occlusion
,”
J. Ophthalmic Vision Res.
13
,
75
77
(
2018
).
9.
R. A.
Mehta
,
M. C.
Akkali
,
C.
Jayadev
,
A.
Anuj
, and
N. K.
Yadav
, “
Morphometric analysis of retinal arterioles in control and hypertensive population using adaptive optics imaging
,”
Indian J. Ophthalmol.
67
,
1673
1677
(
2019
).
10.
L.
István
,
C. N.
Czakó
,
Á.
Élő
,
Z.
Mihály
,
P.
Sótonyi
,
A.
Varga
,
Z. I.
Ungvári
,
A.
Csiszár
,
A.
Yabluchanskiy
,
S. M.
Conley
,
T.
Csipő
,
Á.
Lipecz
,
I.
Kovács
, and
Z. Z.
Nagy
, “
Imaging retinal microvascular manifestations of carotid artery disease in older adults: From diagnosis of ocular complications to understanding microvascular contributions to cognitive impairment
,”
GeroScience
43
,
1703
1723
(
2021
).
11.
Y.
Lu
,
M. O.
Bernabeu
,
J.
Lammer
,
C. C.
Cai
,
M. L.
Jones
,
C. A.
Franco
,
L. P.
Aiello
, and
J. K.
Sun
, “
Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy
,”
Biomed. Opt. Express
7
,
4958
4973
(
2016
).
12.
T. Y.
Wong
,
R.
Klein
,
B. E. K.
Klein
,
J. M.
Tielsch
,
L.
Hubbard
, and
F. J.
Nieto
, “
Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality
,”
Surv. Ophthalmol.
46
,
59
80
(
2001
).
13.
V.
Koh
,
C. Y.-L.
Cheung
,
Y.
Zheng
,
T. Y.
Wong
,
W.
Wong
, and
T.
Aung
, “
Relationship of retinal vascular tortuosity with the neuroretinal rim: The Singapore Malay Eye study
,”
Invest. Ophthalmol. Visual Sci.
51
,
3736
3741
(
2010
).
14.
K.
Gugleta
,
N.
Waldmann
,
A.
Polunina
,
A.
Kochkorov
,
R.
Katamay
,
J.
Flammer
, and
S.
Orgul
, “
Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
251
,
1577
1585
(
2013
).
15.
Y.-C.
Tham
,
C.-Y.
Cheng
,
Y.
Zheng
,
T.
Aung
,
T. Y.
Wong
, and
C. Y.
Cheung
, “
Relationship between retinal vascular geometry with retinal nerve fiber layer and ganglion cell-inner plexiform layer in nonglaucomatous eyes
,”
Invest. Ophthalmol. Visual Sci.
54
,
7309
7316
(
2013
).
16.
E.
Koch
,
D.
Rosenbaum
,
A.
Brolly
,
J. A.
Sahel
,
P.
Chaumet-Riffaud
,
X.
Girerd
,
F.
Rossant
, and
M.
Paques
, “
Morphometric analysis of small arteries in the human retina using adaptive optics imaging: Relationship with blood pressure and focal vascular changes
,”
J. Hypertens.
32
,
890
898
(
2014
).
17.
A. R.
Pries
and
T. W.
Secomb
, “
Chapter 1—Blood flow in microvascular networks
,” in
Microcirculation
,
2nd ed.
, edited by
R. F.
Tuma
,
W. N.
Durán
, and
K.
Ley
(
Academic Press
,
San Diego
,
2008
),
pp
.
3
36
.
18.
A. R.
Pries
and
T. W.
Secomb
, “
Making microvascular networks work: Angiogenesis, remodeling, and pruning
,”
Physiology
29
,
446
455
(
2014
).
19.
M.
Paques
,
R.
Tadayoni
,
R.
Sercombe
,
P.
Laurent
,
O.
Genevois
,
A.
Gaudric
, and
E.
Vicaut
, “
Structural and hemodynamic analysis of the mouse retinal microcirculation
,”
Invest. Ophthalmol. Visual Sci.
44
,
4960
4967
(
2003
).
20.
S.
Fouquet
,
O.
Vacca
,
F.
Sennlaub
, and
M.
Paques
, “
The 3D retinal capillary circulation in pigs reveals a predominant serial organization
,”
Invest. Ophthalmol. Visual Sci.
58
,
5754
5763
(
2017
).
21.
D.
Liu
,
N. B.
Wood
,
N.
Witt
,
A. D.
Hughes
,
S. A.
Thom
, and
X. Y.
Xu
, “
Computational analysis of oxygen transport in the retinal arterial network
,”
Curr. Eye Res.
34
,
945
956
(
2009
).
22.
P.
Ganesan
,
S.
He
, and
H.
Xu
, “
Development of an image-based network model of retinal vasculature
,”
Ann. Biomed. Eng.
38
,
1566
1585
(
2010
).
23.
J.
Malek
,
A. T.
Azar
,
B.
Nasralli
,
M.
Tekari
,
H.
Kamoun
, and
R.
Tourki
, “
Computational analysis of blood flow in the retinal arteries and veins using fundus image
,”
Comput. Math. Appl.
69
,
101
116
(
2015
).
24.
A.
Kristen
,
L.
Kelsey
,
E.
Wintermantel
, and
B.
Doyle
, “
Fundus image based blood flow simulation of the retinal arteries
,” in
Computational Biomechanics for Medicine,
edited by G. Joldes, B. Doyle, A. Wittek, P. Nielsen, and K. Miller (Springer,
2016
), pp.
143
154
.
25.
G.
Guidoboni
,
A.
Harris
,
S.
Cassani
,
J.
Arciero
,
B.
Siesky
,
A.
Amireskandari
,
L.
Tobe
,
P.
Egan
,
I.
Januleviciene
, and
J.
Park
, “
Intraocular pressure, blood pressure, and retinal blood flow autoregulation: A mathematical model to clarify their relationship and clinical relevance
,”
Invest. Ophthalmol. Visual Sci.
55
,
4105
4118
(
2014
).
26.
P.
Causin
,
G.
Guidoboni
,
F.
Malgaroli
,
R.
Sacco
, and
A.
Harris
, “
Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: Multiscale mathematical modeling and numerical simulation
,”
Biomech. Model. Mechanobiol.
15
,
525
(
2016
).
27.
A.
Dziubek
,
G.
Guidoboni
,
A.
Harris
,
A. N.
Hirani
,
E.
Rusjan
, and
W.
Thistleton
, “
Effect of ocular shape and vascular geometry on retinal hemodynamics: A computational model
,”
Biomech. Model. Mechanobiol.
15
,
893
907
(
2016
).
28.
J.
Rebhan
,
L. P.
Parker
,
L. J.
Kelsey
,
F. K.
Chen
, and
B. J.
Doyle
, “
A computational framework to investigate retinal haemodynamics and tissue stress
,”
Biomech. Model. Mechanobiol.
18
,
1745
1757
(
2019
).
29.
C.
Prud'homme
,
L.
Sala
, and
M.
Szopos
, “
Uncertainty propagation and sensitivity analysis: Results from the ocular mathematical virtual simulator
,”
Math. Biosci. Eng.
18
,
2010
2032
(
2021
).
30.
L.
Formaggia
,
D.
Lamponi
, and
A.
Quarteroni
, “
One-dimensional models for blood flow in arteries
,”
J. Eng. Math.
47
,
251
276
(
2003
).
31.
L. O.
Müller
,
C.
Parés
, and
E. F.
Toro
, “
Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties
,”
J. Comput. Phys.
242
,
53
(
2013
).
32.
A. R.
Ghigo
,
S.
Abou Taam
,
X.
Wang
,
P.-Y.
Lagrée
, and
J.-M.
Fullana
, “
A one-dimensional arterial network model for bypass graft assessment
,”
Med. Eng. Phys.
43
,
39
47
(
2017
).
33.
A.
Ghigo
, “
Reduced-order models for blood flow in networks of large arteries
,” Ph.D. thesis,
Université Pierre et marie Curie, Institut Jean le Rond D'Alembert
, F-75005
Paris, France
,
2017
.
34.
D. H.
Bergel
, “
The static elastic properties of the arterial wall
,”
J. Physiol.
156
,
445
457
(
1961
).
35.
C. G.
Caro
,
T. J.
Pedley
,
R. C.
Schroter
,
W. A.
Seed
, and
K. H.
Parker
,
The Mechanics of the Circulation
,
2nd ed
. (
Cambridge University Press
,
2011
).
36.
D.
Quemada
, “
Hydrodynamique sanguine: Hémorhéologie et écoulement du sang dans les petits vaisseaux
,”
J. Phys. Colloques
37
,
C1-9
C1-22
(
1976
).
37.
V.
de Vossevan Dongen
,
Cardiovascular Fluid Mechanics: Lecture Notes
(
Technische Universiteit Eindhoven
,
1998
).
38.
A.
Sequeira
and
J.
Janela
, “
An overview of some mathematical models of blood rheology
,” in
A Portrait of State-of-the-Art Research at the Technical University of Lisbon
, edited by
M. S.
Pereira
(
Springer
,
Netherlands, Dordrecht
,
2007
) pp.
65
87
.
39.
S. J.
Hund
,
M. V.
Kameneva
, and
J. F.
Antaki
, “
A quasi-mechanistic mathematical representation for blood viscosity
,”
Fluids
2
,
10
(
2017
).
40.
M. M.
Cross
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
,
417
437
(
1965
).
41.
R.
Fåhraeus
, “
The suspension stability of the blood
,”
Physiol. Rev.
9
,
241
274
(
1929
).
42.
T. W.
Secomb
and
A. R.
Pries
, “
Blood viscosity in microvessels: Experiment and theory
,”
C. R. Phys.
14
,
470
478
(
2013
).
43.
R.
Fåhraeus
and
T.
Lindqvist
, “
The viscosity of blood in narrow capillary tubes
,”
Am. J. Physiol.-Legacy Content
96
,
562
568
(
1931
).
44.
M.
Kiani
and
A. G.
Hudetz
, “
A semi-empirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit
,”
Biorheology
28
,
65
73
(
1991
).
45.
A. R.
Ghigo
,
P.-Y.
Lagrée
, and
J.-M.
Fullana
, “
A time-dependent non-Newtonian extension of a 1D blood flow model
,”
J. Non-Newtonian Fluid Mech.
253
,
36
49
(
2018
).
46.
J.
Ventre
,
F.
Raimondi
,
N.
Boddaert
,
J. M.
Fullana
, and
P.-Y.
Lagrée
, “
Reduced-order models for blood pressure drop across arterial stenoses
,” in
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering
, edited by
G. A.
Ateshian
,
K. M.
Myers
, and
J. M. R. S.
Tavares
(
Springer International Publishing
,
2020
), pp.
1
15
.
47.
J.-M.
Fullana
and
S.
Zaleski
, “
A branched one-dimensional model of vessel networks
,”
J. Fluid Mech.
621
,
183
204
(
2009
).
48.
A.
Harten
,
P. D.
Lax
, and
B.
van Leer
, “
On upstream difference and Godunov-Type schemes for hyperbolic conservation laws
,”
SIAM Rev.
25
,
35
61
(
1983
).
49.
R. J.
LeVeque
, “
Finite volume methods for nonlinear systems
,” in
Finite Volume Methods for Hyperbolic Problems
(Cambridge University Press, 2002), pp.
311
349
.
50.
E. F.
Toro
, “
The HLLC Riemann solver
,”
Shock Waves
29
,
1065
(
2019
).
51.
M.
Anliker
,
R. L.
Rockwell
, and
E.
Ogden
, “
Nonlinear analysis of flow pulses and shock waves in arteries
,”
Z. Angew. Math. Phys.
22
,
217
246
(
1971
).
52.
M. S.
Olufsen
, “
Structured tree outflow condition for blood flow in larger systemic arteries
,”
Am. J. Physiol.
276
,
H257
H268
(
1999
).
53.
T.
Takahashi
,
T.
Nagaoka
,
H.
Yanagida
,
T.
Saitoh
,
A.
Kamiya
,
T.
Hein
,
L.
Kuo
, and
A.
Yoshida
, “
A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network
,”
J. Biorheol.
23
,
77
86
(
2009
).
54.
I. G.
Gould
and
A. A.
Linninger
, “
Hematocrit distribution and tissue oxygenation in large microcirculatory networks
,”
Microcirculation
22
,
1
18
(
2015
).
55.
D.
Guan
,
F.
Liang
, and
P. A.
Gremaud
, “
Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model
,”
J. Biomech.
49
,
1583
1592
(
2016
).
56.
J.
Liang
,
D. R.
Williams
, and
D. T.
Miller
, “
Supernormal vision and high-resolution retinal imaging through adaptive optics
,”
J. Opt. Soc. Am. A
14
,
2884
2892
(
1997
).
57.
P.
Godara
,
A. M.
Dubis
,
A.
Roorda
,
J. L.
Duncan
, and
J.
Carroll
, “
Adaptive optics retinal imaging: Emerging clinical applications
,”
Optom. Vision Sci.
87
,
930
(
2010
).
58.
A.
Roorda
, “
Applications of adaptive optics scanning laser ophthalmoscopy
,”
Optom. Vision Sci.
87
,
260
(
2010
).
59.
S.
Marcos
,
J. S.
Werner
,
S. A.
Burns
,
W. H.
Merigan
,
P.
Artal
,
D. A.
Atchison
,
K. M.
Hampson
,
R.
Legras
,
L.
Lundstrom
,
G.
Yoon
et al, “
Vision science and adaptive optics, the state of the field
,”
Vision Res.
132
,
3
33
(
2017
).
60.
M.
Paques
,
S.
Meimon
,
F.
Rossant
,
D.
Rosenbaum
,
S.
Mrejen
,
F.
Sennlaub
, and
K.
Grieve
, “
Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases
,”
Prog. Retinal Eye Res.
66
,
1
16
(
2018
).
61.
A.
Roorda
and
J. L.
Duncan
, “
Adaptive optics ophthalmoscopy
,”
Annu. Rev. Vision Sci.
1
,
19
50
(
2015
).
62.
N.
Lermé
,
F.
Rossant
,
I.
Bloch
,
M.
Paques
,
E.
Koch
, and
J.
Benesty
, “
A fully automatic method for segmenting retinal artery walls in adaptive optics images
,”
Pattern Recognit. Lett.
72
,
72
81
(
2016
).
63.
I.
Trimeche
,
F.
Rossant
,
I.
Bloch
, and
M.
Paques
, “
Segmentation of retinal arterial bifurcations in 2D adaptive optics ophthalmoscopy images
,” in
2019 IEEE International Conference on Image Processing (ICIP)
(IEEE, 2019), pp.
1490
1494
.
64.
C. D.
Murray
, “
The physiological principle of minimum work
,”
Proc. Natl. Acad. Sci. U. S. A.
12
,
207
214
(
1926
).
65.
Y. C.
Fung
, “
Blood flow in arteries
,” in
Biomechanics: Circulation
(
Springer
,
New York, NY
,
1997
), pp.
108
205
.
66.
C. E.
Riva
,
J. E.
Grunwald
,
S. H.
Sinclair
, and
B. L.
Petrig
, “
Blood velocity and volumetric flow rate in human retinal vessels
,”
Invest. Ophthalmol. Visual Sci.
26
,
1124
1132
(
1985
).
67.
G.
Garhofer
,
R.
Werkmeister
,
N.
Dragostinoff
, and
L.
Schmetterer
, “
Retinal blood flow in healthy young subjects
,”
Invest. Ophthalmol. Visual Sci.
53
,
698
703
(
2012
).
68.
R. M.
Werkmeister
,
N.
Dragostinoff
,
S.
Palkovits
,
R.
Told
,
A.
Boltz
,
R. A.
Leitgeb
,
M.
Gröschl
,
G.
Garhöfer
, and
L.
Schmetterer
, “
Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler Fourier-domain optical coherence tomography
,”
Invest. Ophthalmol. Visual Sci.
53
,
6062
6071
(
2012
).
69.
I.
Sobol
, “
Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
,”
Math. Comput. Simul.
55
,
271
280
(
2001
). the Second IMACS Seminar on Monte Carlo Methods.
70.
L.
Sala
,
N.
Golse
,
A.
Joosten
,
E.
Vibert
, and
I.
Vignon-Clementel
, “
Sensitivity analysis of a mathematical model simulating the post-hepatectomy hemodynamics response
,”
Ann. Biomed. Eng.
51
,
270
289
(
2023
).
71.
J.
Herman
and
W.
Usher
, “
SALib: An open-source Python library for sensitivity analysis
,”
J. Open Source Software
2
,
97
(
2017
).
72.
T.
Iwanaga
,
W.
Usher
, and
J.
Herman
, “
Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses
,”
Socio-Environ. Syst. Modell.
4
,
18155
(
2022
).
73.
A.
Saltelli
, “
Making best use of model evaluations to compute sensitivity indices
,”
Comput. Phys. Commun.
145
,
280
297
(
2002
).
74.
A.
Joseph
,
A.
Guevara-Torres
, and
J.
Schallek
, “
Imaging single-cell blood flow in the smallest to largest vessels in the living retina
,”
eLife
8
,
e45077
(
2019
).
75.
Y.
Wang
,
A.
Lu
,
J.
Gil-Flamer
,
O.
Tan
,
J. A.
Izatt
, and
D.
Huang
, “
Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography
,”
Br. J Ophthalmol.
93
,
634
637
(
2009
).
76.
W.
Choi
,
B.
Baumann
,
J. J.
Liu
,
A. C.
Clermont
,
E. P.
Feener
,
J. S.
Duker
, and
J. G.
Fujimoto
, “
Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT
,”
Biomed. Opt. Express
3
,
1047
1061
(
2012
).
77.
T. E.
Kornfield
and
E. A.
Newman
, “
Measurement of retinal blood flow using fluorescently labeled red blood cells
,”
eNeuro
2
,
ENEURO.0005‐15.2015
(
2015
).
You do not currently have access to this content.