Drying complex fluids is a common phenomenon where a liquid phase transforms into a dense or porous solid. This transformation involves several physical processes, such as the diffusion of liquid molecules into the surrounding atmosphere and the movement of dispersed phases through evaporation-driven flow. As a result, the solute forming a dried deposit exhibits unique patterns and often displays structural defects like desiccation cracks, buckling, or wrinkling. Various drying configurations have been utilized to study the drying of colloids, the process of their consolidation, and fluid-flow dynamics. This review focuses on the drying of colloids and the related phenomena, specifically the drying-induced effects observed during sessile drop drying. We first present a theoretical overview of the physics of drying pure and binary liquid droplets, followed by drying colloidal droplets. Then, we explain the phenomena of pattern formation and desiccation cracks. Additionally, the article briefly describes the impact of evaporation-driven flows on the accumulation of particles and various physical parameters that influence deposit patterns and cracks.

1.
F.
Giorgiutti-Dauphiné
and
L.
Pauchard
, “
Drying drops
,”
Eur. Phys. J. E
41
,
32
(
2018
).
2.
W. B.
Russel
,
W.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1991
).
3.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
2012
).
4.
A. F.
Routh
, “
Drying of thin colloidal films
,”
Rep. Prog. Phys.
76
,
046603
(
2013
).
5.
L.
Goehring
,
A.
Nakahara
,
T.
Dutta
,
S.
Kitsunezaki
, and
S.
Tarafdar
,
Desiccation Cracks and Their Patterns: Formation and Modelling in Science and Nature
(
John Wiley & Sons
,
2015
).
6.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
829
(
1997
).
7.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Contact line deposits in an evaporating drop
,”
Phys. Rev. E
62
,
756
(
2000
).
8.
J.
Park
and
J.
Moon
, “
Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing
,”
Langmuir
22
,
3506
3513
(
2006
).
9.
F. S.
Abas
and
K.
Martinez
, “
Classification of painting cracks for content-based analysis
,” in
Machine Vision Applications in Industrial Inspection XI
(
International Society for Optics and Photonics
,
2003
), Vol.
5011,
pp.
149
160
.
10.
F.
Giorgiutti-Dauphiné
and
L.
Pauchard
, “
Painting cracks: A way to investigate the pictorial matter
,”
J. Appl. Phys.
120
,
065107
(
2016
).
11.
L.
Goehring
,
L.
Mahadevan
, and
S. W.
Morris
, “
Nonequilibrium scale selection mechanism for columnar jointing
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
387
392
(
2009
).
12.
L.
Goehring
, “
Evolving fracture patterns: Columnar joints, mud cracks and polygonal terrain
,”
Philos. Trans. R. Soc. A
371
,
20120353
(
2013
).
13.
F.
Juillerat
,
P.
Bowen
, and
H.
Hofmann
, “
Formation and drying of colloidal crystals using nanosized silica particles
,”
Langmuir
22
,
2249
2257
(
2006
).
14.
J.
Zhang
,
Z.
Sun
, and
B.
Yang
, “
Self-assembly of photonic crystals from polymer colloids
,”
Curr. Opin. Colloid Interface Sci.
14
,
103
114
(
2009
).
15.
K.
Sefiane
, “
Patterns from drying drops
,”
Adv. Colloid Interface Sci.
206
,
372
381
(
2014
).
16.
P.
Katre
,
S.
Balusamy
,
S.
Banerjee
,
D. L.
Chandrala
, and
K. C.
Sahu
, “
Evaporation dynamics of a sessile droplet of binary mixture laden with nanoparticles
,”
Langmuir
37
,
6311
6321
(
2021
).
17.
P.
Katre
,
S.
Balusamy
,
S.
Banerjee
, and
K. C.
Sahu
, “
An experimental investigation of evaporation of ethanol–water droplets laden with alumina nanoparticles on a critically inclined heated substrate
,”
Langmuir
38
,
4722
4735
(
2022
).
18.
P.
Katre
,
P.
Gurrala
,
S.
Balusamy
,
S.
Banerjee
, and
K. C.
Sahu
, “
Evaporation of sessile ethanol-water droplets on a critically inclined heated surface
,”
Int. J. Multiphase Flow
131
,
103368
(
2020
).
19.
G.
Müller
, “
Experimental simulation of basalt columns
,”
J. Volcanol. Geotherm. Res.
86
,
93
96
(
1998
).
20.
K. H.
Nam
,
I. H.
Park
, and
S. H.
Ko
, “
Patterning by controlled cracking
,”
Nature
485
,
221
224
(
2012
).
21.
W.
Han
,
B.
Li
, and
Z.
Lin
, “
Drying-mediated assembly of colloidal nanoparticles into large-scale microchannels
,”
ACS Nano
7
,
6079
6085
(
2013
).
22.
M.
Kim
,
D.
Ha
, and
T.
Kim
, “
Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications
,”
Nat. Commun.
6
,
6247
(
2015
).
23.
D.
Brutin
,
B.
Sobac
, and
C.
Nicloux
, “
Influence of substrate nature on the evaporation of a sessile drop of blood
,”
J. Heat Transfer
134
,
061101
(
2012
).
24.
P.
Bacchin
,
D.
Brutin
,
A.
Davaille
,
E.
Di Giuseppe
,
X. D.
Chen
,
I.
Gergianakis
,
F.
Giorgiutti-Dauphiné
,
L.
Goehring
,
Y.
Hallez
,
R.
Heyd
, and
R.
Jeantet
, “
Drying colloidal systems: Laboratory models for a wide range of applications
,”
Eur. Phys. J. E
41
,
94
(
2018
).
25.
D.
Brutin
,
Droplet Wetting and Evaporation: From Pure to Complex Fluids
(
Academic Press
,
2015
).
26.
B.
Sobac
and
D.
Brutin
, “
Thermal effects of the substrate on water droplet evaporation
,”
Phys. Rev. E
86
,
021602
(
2012
).
27.
F.
Carle
,
S.
Semenov
,
M.
Medale
, and
D.
Brutin
, “
Contribution of convective transport to evaporation of sessile droplets: Empirical model
,”
Int. J. Therm. Sci.
101
,
35
47
(
2016
).
28.
H.
Hu
and
R. G.
Larson
, “
Evaporation of a sessile droplet on a substrate
,”
J. Phys. Chem. B
106
,
1334
1344
(
2002
).
29.
P. L.
Kelly-Zion
,
C. J.
Pursell
,
G. N.
Wassom
,
B. V.
Mandelkorn
, and
C.
Nkinthorn
, “
Correlation for sessile drop evaporation over a wide range of drop volatilities, ambient gases and pressures
,”
Int. J. Heat Mass Transfer
118
,
355
367
(
2018
).
30.
P.
Gurrala
,
P.
Katre
,
S.
Balusamy
,
S.
Banerjee
, and
K. C.
Sahu
, “
Evaporation of ethanol-water sessile droplet of different compositions at an elevated substrate temperature
,”
Int. J. Heat Mass Transfer
145
,
118770
(
2019
).
31.
J. R.
Lloyd
and
W. R.
Moran
, “
Natural convection adjacent to horizontal surface of various planforms
,”
J. Heat Transfer
96
,
443
447
(
1974
).
32.
S. I.
Sandler
,
Chemical, Biochemical, and Engineering Thermodynamics
(
John Wiley & Sons
,
2017
).
33.
K. N.
Marsh
and
A. E.
Richards
, “
Excess volumes for ethanol + water mixtures at 10-k intervals from 278.15 to 338.15 k
,”
Aust. J. Chem.
33
,
2121
2132
(
1980
).
34.
J.
Jiménez
,
J.
Manrique
, and
F.
Martínez
, “
Effect of temperature on some volumetric properties for ethanol + water mixtures
,”
Rev. Colomb. Cienc. Quím.-Farm.
33
,
145
155
(
2004
).
35.
B.
Danahy
,
D.
Minnick
, and
M.
Shiflett
, “
Computing the composition of ethanol-water mixtures based on experimental density and temperature measurements
,”
Fermentation
4
,
72
(
2018
).
36.
Y.
Li
,
C.
Diddens
,
P.
Lv
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Gravitational effect in evaporating binary microdroplets
,”
Phys. Rev. Lett.
122
,
114501
(
2019
).
37.
C.
Diddens
,
Y.
Li
, and
D.
Lohse
, “
Competing Marangoni and Rayleigh convection in evaporating binary droplets
,”
J. Fluid Mech.
914
,
A23
(
2021
).
38.
A. M. J.
Edwards
,
P. S.
Atkinson
,
C. S.
Cheung
,
H.
Liang
,
D. J.
Fairhurst
, and
F. F.
Ouali
, “
Density-driven flows in evaporating binary liquid droplets
,”
Phys. Rev. Lett.
121
,
184501
(
2018
).
39.
A.
Hari Govindha
,
P.
Katre
,
S.
Balusamy
,
S.
Banerjee
, and
K. C.
Sahu
, “
Counter-intuitive evaporation in nanofluids droplets due to stick-slip nature
,”
Langmuir
38
,
15361
15371
(
2022
).
40.
P.
Katre
,
S.
Banerjee
,
S.
Balusamy
, and
K. C.
Sahu
, “
Stability and retention force factor for binary-nanofluid sessile droplets on an inclined substrate
,”
Ind. Eng. Chem. Res.
(published online) (
2023
).
41.
H.
Hu
and
R. G.
Larson
, “
Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet
,”
Langmuir
21
,
3972
3980
(
2005
).
42.
H.
Hu
and
R. G.
Larson
, “
Marangoni effect reverses coffee-ring depositions
,”
J. Phys. Chem. B
110
,
7090
7094
(
2006
).
43.
A. G.
Marin
,
H.
Gelderblom
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Order-to-disorder transition in ring-shaped colloidal stains
,”
Phys. Rev. Lett.
107
,
085502
(
2011
).
44.
R.
Mondal
,
S.
Semwal
,
P. L.
Kumar
,
S. P.
Thampi
, and
M. G.
Basavaraj
, “
Patterns in drying drops dictated by curvature-driven particle transport
,”
Langmuir
34
,
11473
11483
(
2018
).
45.
M.
Cavallaro
,
L.
Botto
,
E. P.
Lewandowski
,
M.
Wang
, and
K. J.
Stebe
, “
Curvature-driven capillary migration and assembly of rod-like particles
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
20923
20928
(
2011
).
46.
B. M.
Weon
and
J. H.
Je
, “
Fingering inside the coffee ring
,”
Phys. Rev. E
87
,
013003
(
2013
).
47.
S.
Karpitschka
,
F.
Liebig
, and
H.
Riegler
, “
Marangoni contraction of evaporating sessile droplets of binary mixtures
,”
Langmuir
33
,
4682
4687
(
2017
).
48.
P.
Takhistov
and
H.-C.
Chang
, “
Complex stain morphologies
,”
Ind. Eng. Chem. Res.
41
,
6256
6269
(
2002
).
49.
F.
Girard
,
M.
Antoni
,
S.
Faure
, and
A.
Steinchen
, “
Evaporation and Marangoni driven convection in small heated water droplets
,”
Langmuir
22
,
11085
11091
(
2006
).
50.
W.
Ristenpart
,
P.
Kim
,
C.
Domingues
,
J.
Wan
, and
H. A.
Stone
, “
Influence of substrate conductivity on circulation reversal in evaporating drops
,”
Phys. Rev. Lett.
99
,
234502
(
2007
).
51.
L.
Cui
,
J.
Zhang
,
X.
Zhang
,
L.
Huang
,
Z.
Wang
,
Y.
Li
,
H.
Gao
,
S.
Zhu
,
T.
Wang
, and
B.
Yang
, “
Suppression of the coffee ring effect by hydrosoluble polymer additives
,”
ACS Appl. Mater. Interfaces
4
,
2775
2780
(
2012
).
52.
T.
Still
,
P. J.
Yunker
, and
A. G.
Yodh
, “
Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops
,”
Langmuir
28
,
4984
4988
(
2012
).
53.
D.
Zang
,
S.
Tarafdar
,
Y. Y.
Tarasevich
,
M. D.
Choudhury
, and
T.
Dutta
, “
Evaporation of a droplet: From physics to applications
,”
Phys. Rep.
804
,
1
56
(
2019
).
54.
B. M.
Weon
and
J. H.
Je
, “
Capillary force repels coffee-ring effect
,”
Phys. Rev. E
82
,
015305
(
2010
).
55.
W.
Li
,
W.
Ji
,
H.
Sun
,
D.
Lan
, and
Y.
Wang
, “
Pattern formation in drying sessile and pendant droplet: Interactions of gravity settling, interface shrinkage, and capillary flow
,”
Langmuir
35
,
113
119
(
2019
).
56.
P. L.
Kumar
,
S. P.
Thampi
, and
M. G.
Basavaraj
, “
Patterns from drops drying on inclined substrates
,”
Soft Matter
17
,
7670
7681
(
2021
).
57.
P. J.
Yunker
,
T.
Still
,
M. A.
Lohr
, and
A.
Yodh
, “
Suppression of the coffee-ring effect by shape-dependent capillary interactions
,”
Nature
476
,
308
311
(
2011
).
58.
R.
Bhardwaj
,
X.
Fang
,
P.
Somasundaran
, and
D.
Attinger
, “
Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram
,”
Langmuir
26
,
7833
7842
(
2010
).
59.
V. R.
Dugyala
and
M. G.
Basavaraj
, “
Control over coffee-ring formation in evaporating liquid drops containing ellipsoids
,”
Langmuir
30
,
8680
8686
(
2014
).
60.
Y.
Li
,
Q.
Yang
,
M.
Li
, and
Y.
Song
, “
Rate-dependent interface capture beyond the coffee-ring effect
,”
Sci. Rep.
6
,
24628
(
2016
).
61.
N. D.
Patil
,
P. G.
Bange
,
R.
Bhardwaj
, and
A.
Sharma
, “
Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles
,”
Langmuir
32
,
11958
11972
(
2016
).
62.
K.
Uno
,
K.
Hayashi
,
T.
Hayashi
,
K.
Ito
, and
H.
Kitano
, “
Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces
,”
Colloid Polym. Sci.
276
,
810
815
(
1998
).
63.
W.
Zhang
,
T.
Yu
,
L.
Liao
, and
Z.
Cao
, “
Ring formation from a drying sessile colloidal droplet
,”
AIP Adv.
3
,
102109
(
2013
).
64.
Y.
Li
,
C.
Lv
,
Z.
Li
,
D.
Quéré
, and
Q.
Zheng
, “
From coffee rings to coffee eyes
,”
Soft Matter
11
,
4669
4673
(
2015
).
65.
C.
Zhang
,
W.
Li
, and
Y.
Wang
, “
Ultrafast self-assembly of colloidal photonic crystals during low-pressure-assisted evaporation of droplets
,”
J. Phys. Chem. Lett.
13
,
3776
3780
(
2022
).
66.
C.
Nobile
,
L.
Carbone
,
A.
Fiore
,
R.
Cingolani
,
L.
Manna
, and
R.
Krahne
, “
Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics
,”
J. Phys.: Condens. Matter
21
,
264013
(
2009
).
67.
D.
Mampallil
,
J.
Reboud
,
R.
Wilson
,
D.
Wylie
,
D. R.
Klug
, and
J. M.
Cooper
, “
Acoustic suppression of the coffee-ring effect
,”
Soft Matter
11
,
7207
7213
(
2015
).
68.
G.
McHale
,
S.
Aqil
,
N.
Shirtcliffe
,
M.
Newton
, and
H. Y.
Erbil
, “
Analysis of droplet evaporation on a superhydrophobic surface
,”
Langmuir
21
,
11053
11060
(
2005
).
69.
H.
Gelderblom
,
A. G.
Marin
,
H.
Nair
,
A.
Van Houselt
,
L.
Lefferts
,
J. H.
Snoeijer
, and
D.
Lohse
, “
How water droplets evaporate on a superhydrophobic substrate
,”
Phys. Rev. E
83
,
026306
(
2011
).
70.
W.
Li
,
D.
Lan
,
H.
Sun
, and
Y.
Wang
, “
Drop capturing based on patterned substrate in space
,”
Langmuir
34
,
4715
4721
(
2018
).
71.
D.
Lohani
and
S.
Sarkar
, “
Nanoscale topographical fluctuations: A key factor for evaporative colloidal self-assembly
,”
Langmuir
34
,
12751
12758
(
2018
).
72.
R.
Picknett
and
R.
Bexon
, “
The evaporation of sessile or pendant drops in still air
,”
J. Colloid Interface Sci.
61
,
336
350
(
1977
).
73.
M. E.
Shanahan
, “
Condensation transport in dynamic wetting
,”
Langmuir
17
,
3997
4002
(
2001
).
74.
X.
Zhang
,
J.
Wang
,
L.
Bao
,
E.
Dietrich
,
R. C.
van der Veen
,
S.
Peng
,
J.
Friend
,
H. J.
Zandvliet
,
L.
Yeo
, and
D.
Lohse
, “
Mixed mode of dissolving immersed nanodroplets at a solid–water interface
,”
Soft Matter
11
,
1889
1900
(
2015
).
75.
R.
Mondal
and
M. G.
Basavaraj
, “
Influence of the drying configuration on the patterning of ellipsoids–concentric rings and concentric cracks
,”
Phys. Chem. Chem. Phys.
21
,
20045
20054
(
2019
).
76.
R.
Mondal
and
M. G.
Basavaraj
, “
Patterning of colloids into spirals via confined drying
,”
Soft Matter
16
,
3753
3761
(
2020
).
77.
B.
Hatton
,
L.
Mishchenko
,
S.
Davis
,
K. H.
Sandhage
, and
J.
Aizenberg
, “
Assembly of large-area, highly ordered, crack-free inverse opal films
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
10354
10359
(
2010
).
78.
L.
Pauchard
and
Y.
Couder
, “
Invagination during the collapse of an inhomogeneous spheroidal shell
,”
Europhys. Lett.
66
,
667
(
2004
).
79.
F.
Giorgiutti-Dauphine
and
L.
Pauchard
, “
Dynamic delamination of drying colloidal films: Warping and creep behavior
,”
Colloids Surf., A
466
,
203
209
(
2015
).
80.
M. A.
Biot
, “
General theory of three-dimensional consolidation
,”
J. Appl. Phys.
12
,
155
164
(
1941
).
81.
G. W.
Scherer
, “
Drying gels: VIII. Revision and review
,”
J. Non-Cryst. Solids
109
,
171
182
(
1989
).
82.
A.
Merxhani
, “
An introduction to linear poroelasticity
,” arXiv:1607.04274 (
2016
).
83.
K.
Terzaghi
,
Theoretical Soil Mechanics
(
John Wiley & Sons
,
New York
,
1943
).
84.
T. L.
Anderson
,
Fracture Mechanics: Fundamentals and Applications
(
CRC Press
,
2017
).
85.
M. S.
Tirumkudulu
and
W. B.
Russel
, “
Cracking in drying latex films
,”
Langmuir
21
,
4938
4948
(
2005
).
86.
A.
Groisman
and
E.
Kaplan
, “
An experimental study of cracking induced by desiccation
,”
Europhys. Lett.
25
,
415
(
1994
).
87.
C.
Allain
and
L.
Limat
, “
Regular patterns of cracks formed by directional drying of a collodial suspension
,”
Phys. Rev. Lett.
74
,
2981
(
1995
).
88.
S.
Kitsunezaki
, “
Fracture patterns induced by desiccation in a thin layer
,”
Phys. Rev. E
60
,
6449
(
1999
).
89.
T. S.
Komatsu
and
S.-I.
Sasa
, “
Pattern selection of cracks in directionally drying fracture
,”
Jpn. J. Appl. Phys., Part 1
36
,
391
(
1997
).
90.
S.
Inasawa
and
Y.
Yamaguchi
, “
Self-organized pattern formation of cracks perpendicular to the drying direction of a colloidal suspension
,”
Soft Matter
8
,
2416
2422
(
2012
).
91.
J.
Marthelot
,
B.
Roman
,
J.
Bico
,
J.
Teisseire
,
D.
Dalmas
, and
F.
Melo
, “
Self-replicating cracks: A collaborative fracture mode in thin films
,”
Phys. Rev. Lett.
113
,
085502
(
2014
).
92.
S.
Bohn
,
J.
Platkiewicz
,
B.
Andreotti
,
M.
Adda-Bedia
, and
Y.
Couder
, “
Hierarchical crack pattern as formed by successive domain divisions. II. From disordered to deterministic behavior
,”
Phys. Rev. E
71
,
046215
(
2005
).
93.
L.
Goehring
,
W. J.
Clegg
, and
A. F.
Routh
, “
Wavy cracks in drying colloidal films
,”
Soft Matter
7
,
7984
7987
(
2011
).
94.
L.
Pauchard
,
M.
Adda-Bedia
,
C.
Allain
, and
Y.
Couder
, “
Morphologies resulting from the directional propagation of fractures
,”
Phys. Rev. E
67
,
027103
(
2003
).
95.
V.
Lazarus
and
L.
Pauchard
, “
From craquelures to spiral crack patterns: Influence of layer thickness on the crack patterns induced by desiccation
,”
Soft Matter
7
,
2552
2559
(
2011
).
96.
L.
Pauchard
,
F.
Parisse
, and
C.
Allain
, “
Influence of salt content on crack patterns formed through colloidal suspension desiccation
,”
Phys. Rev. E
59
,
3737
(
1999
).
97.
L.
Goehring
,
W. J.
Clegg
, and
A. F.
Routh
, “
Plasticity and fracture in drying colloidal films
,”
Phys. Rev. Lett.
110
,
024301
(
2013
).
98.
X.
Ma
,
J.
Lowensohn
, and
J. C.
Burton
, “
Universal scaling of polygonal desiccation crack patterns
,”
Phys. Rev. E
99
,
012802
(
2019
).
99.
F.
Giorgiutti-Dauphiné
and
L.
Pauchard
, “
Elapsed time for crack formation during drying
,”
Eur. Phys. J. E
37
,
39
(
2014
).
100.
K.
Piroird
,
V.
Lazarus
,
G.
Gauthier
,
A.
Lesaine
,
D.
Bonamy
, and
C.
Rountree
, “
Role of evaporation rate on the particle organization and crack patterns obtained by drying a colloidal layer
,”
Eurphys. Lett.
113
,
38002
(
2016
).
101.
K. B.
Singh
and
M. S.
Tirumkudulu
, “
Cracking in drying colloidal films
,”
Phys. Rev. Lett.
98
,
218302
(
2007
).
102.
H.
Lama
,
M. G.
Basavaraj
, and
D. K.
Satapathy
, “
Desiccation cracks in dispersion of ellipsoids: Effect of aspect ratio and applied fields
,”
Phys. Rev. Mater.
2
,
085602
(
2018
).
103.
S.
Haque
,
S.
Tarafdar
, and
T.
Dutta
, “
Desiccation cracks formed in Laponite® suspensions of varying pH: Aid to analyzing clay microstructure
,”
Phys. Scr.
95
,
085703
(
2020
).
104.
W. P.
Lee
and
A. F.
Routh
, “
Temperature dependence of crack spacing in drying latex films
,”
Ind. Eng. Chem. Res.
45
,
6996
7001
(
2006
).
105.
H.
Lama
,
M. G.
Basavaraj
, and
D. K.
Satapathy
, “
Tailoring crack morphology in coffee-ring deposits via substrate heating
,”
Soft Matter
13
,
5445
5452
(
2017
).
106.
P.
Nandakishore
and
L.
Goehring
, “
Crack patterns over uneven substrates
,”
Soft Matter
12
,
2253
2263
(
2016
).
107.
T.
Ding
,
K.
Song
,
K.
Clays
, and
C.-H.
Tung
, “
Fabrication of 3D photonic crystals of ellipsoids: Convective self-assembly in magnetic field
,”
Adv. Mater.
21
,
1936
1940
(
2009
).
108.
F.
Martinez-Pedrero
,
A.
Cebers
, and
P.
Tierno
, “
Orientational dynamics of colloidal ribbons self-assembled from microscopic magnetic ellipsoids
,”
Soft Matter
12
,
3688
3695
(
2016
).
109.
A. T.
Ngo
,
J.
Richardi
, and
M. P.
Pileni
, “
Cracks in magnetic nanocrystal films: Do directional and isotropic crack patterns follow the same scaling law?
,”
Nano Lett.
8
,
2485
2489
(
2008
).
110.
M.
Mittal
and
E. M.
Furst
, “
Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films
,”
Adv. Funct. Mater.
19
,
3271
3278
(
2009
).
111.
T.
Khatun
,
M. D.
Choudhury
,
T.
Dutta
, and
S.
Tarafdar
, “
Electric-field-induced crack patterns: Experiments and simulation
,”
Phys. Rev. E
86
,
016114
(
2012
).
112.
A.
Kumar
,
R.
Pujar
,
N.
Gupta
,
S.
Tarafdar
, and
G. U.
Kulkarni
, “
Stress modulation in desiccating crack networks for producing effective templates for patterning metal network based transparent conductors
,”
Appl. Phys. Lett.
111
,
013502
(
2017
).
113.
J. J.
Crassous
,
A. M.
Mihut
,
E.
Wernersson
,
P.
Pfleiderer
,
J.
Vermant
,
P.
Linse
, and
P.
Schurtenberger
, “
Field-induced assembly of colloidal ellipsoids into well-defined microtubules
,”
Nat. Commun.
5
,
5516
(
2014
).
114.
M.
Trau
,
D.
Saville
, and
I.
Aksay
, “
Assembly of colloidal crystals at electrode interfaces
,”
Langmuir
13
,
6375
6381
(
1997
).
You do not currently have access to this content.