Flapping is an energy-demanding mode of fast animal locomotion that requires physiology, wing kinematics, and unsteady mechanics to work in unison. The trailing flow or wake is a signature of flapping mechanics, which makes it a popular candidate for visualization and analysis. While there are multiple ways to analyze wakes, we need a general framework to ensure utility of the analysis in bio-inspired flapping flight. In this article, we develop a theoretical framework to analyze the transport phenomena of wakes. To illustrate, we apply the theory to a two-dimensional modeled hovering flight comprising engineered rigid flapping plates, which vary in aspect ratio, wingbeat frequency, and the use of winglet. The results potentially explain certain observations in natural flight.

1.
P. J.
Butler
, “
The physiological basis of bird flight
,”
Philos. Trans. R. Soc., B
371
,
20150384
(
2016
).
2.
C. J.
Pennycuick
,
Modelling the Flying Bird
(
Elsevier
,
2008
).
3.
R.
Ingersoll
,
L.
Haizmann
, and
D.
Lentink
, “
Biomechanics of hover performance in Neotropical hummingbirds versus bats
,”
Sci. Adv.
4
,
eaat2980
(
2018
).
4.
D. D.
Chin
and
D.
Lentink
, “
Flapping wing aerodynamics: From insects to vertebrates
,”
J. Exp. Biol.
219
,
920
932
(
2016
).
5.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. I. The quasi-steady analysis
,”
Philos. Trans. R. Soc., B
305
,
1
15
(
1984
).
6.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
,
626
630
(
1996
).
7.
M. H.
Dickinson
,
F.-O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
1960
(
1999
).
8.
M. J.
Lighthill
, “
On the Weis-Fogh mechanism of lift generation
,”
J. Fluid Mech.
60
,
1
17
(
1973
).
9.
R. B.
Srygley
and
A. L. R.
Thomas
, “
Unconventional lift-generating mechanisms in free-flying butterflies
,”
Nature
420
,
660
664
(
2002
).
10.
T.
Weis-Fogh
, “
Energetics of hovering flight in hummingbirds and in Drosophila
,”
J. Exp. Biol.
56
,
79
104
(
1972
).
11.
T.
Maxworthy
, “
Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling
,’”
J. Fluid Mech.
93
,
47
63
(
1979
).
12.
J. M.
Birch
and
M. H.
Dickinson
, “
Spanwise flow and the attachment of the leading-edge vortex on insect wings
,”
Nature
412
,
729
733
(
2001
).
13.
J. M.
Birch
and
M. H.
Dickinson
, “
The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight
,”
J. Exp. Biol.
206
,
2257
2272
(
2003
).
14.
S. J.
Portugal
,
T. Y.
Hubel
,
J.
Fritz
,
S.
Heese
,
D.
Trobe
,
B.
Voelkl
,
S.
Hailes
,
A. M.
Wilson
, and
J. R.
Usherwood
, “
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight
,”
Nature
505
,
399
402
(
2014
).
15.
L.
Kang
,
X.-Y.
Lu
, and
W.
Cui
, “
Intermittent swimming of two self-propelled flapping plates in tandem configuration
,”
Phys. Fluids
34
,
011905
(
2022
).
16.
S.
Goli
,
A.
Roy
,
D. K.
Patel
, and
S.
Roy
, “
Particle image velocimetry measurements of rigid and flexible rectangular wings undergoing main flapping motion in hovering flight
,” in
Fluid Mechanics and Fluid Power–Contemporary Research
(
Springer
,
2017
), pp.
1411
1420
.
17.
S.
Goli
,
S. S.
Dammati
,
A.
Roy
, and
S.
Roy
, “
Coherent structures in the flow field generated by rigid flapping wing in hovering flight mode
,”
IOP Conf. Ser.: Mater. Sci. Eng.
402
,
012155
(
2018
).
18.
S.
Goli
,
S. S.
Dammati
,
A.
Roy
, and
S.
Roy
, “
Vortex identification and proper orthogonal decomposition of rigid flapping wing
,”
Int. J. Fluid Mech. Res.
47
,
309
328
(
2020
).
19.
S.
Goli
,
A.
Roy
, and
S.
Roy
, “
Vortex filamentation and fragmentation phenomena in flapping motion and effect of aspect ratio and frequency on global strain, rotation, and enstrophy
,”
Int. J. Micro Air Veh.
11
,
1
30
(
2019
).
20.
S.
Goli
,
A.
Roy
, and
S.
Roy
, “
Velocity field around a rigid flapping wing with a winglet in quiescent water
,”
Adv. Technol. Innovation
5
,
259
269
(
2020
).
21.
V.
Vineeth
,
D. K.
Patel
,
S.
Roy
,
S.
Goli
, and
A.
Roy
, “
Investigations into transient wakes behind a custom airfoil undergoing pitching motion
,”
Eur. J. Mech., B: Fluids
85
,
193
213
(
2021
).
22.
S. S.
Dammati
,
S.
Goli
,
S. S.
Varanasi
,
P.
Srinag
, and
A.
Roy
, “
Effect of flapping frequency, Reynolds number and angle of attack on the aerodynamic force coefficients of a translating wing
,”
CEAS Aeronaut. J.
13
,
137
162
(
2022
).
23.
P.
Chakraborty
,
A.
Roy
, and
S.
Chakraborty
, “
Mechanistic basis of transport in unconfined swirling flows
,”
Phys. Fluids
33
,
053109
(
2021
).
24.
P.
Chakraborty
,
A.
Roy
, and
S.
Chakraborty
, “
Topology and transport in generalized helical flows
,”
Phys. Fluids
33
,
117106
(
2021
).
25.
P.
Chakraborty
and
A.
Roy
, “
Wake aerodynamics of flapping systems in formation flight
,”
Phys. Fluids
34
,
047113
(
2022
).
26.
M. H.
Dickinson
,
C. T.
Farley
,
R. K.
Full
,
M. A. R.
Koehl
,
R.
Kram
, and
S.
Lehman
, “
How animals move: An integrative view
,”
Science
288
,
100
106
(
2000
).
27.
J. P.
Whitney
and
R. J.
Wood
, “
Aeromechanics of passive rotation in flapping flight
,”
J. Fluid Mech.
660
,
197
220
(
2010
).
28.
Z. J.
Wang
, “
Two dimensional mechanism for insect hovering
,”
Phys. Rev. Lett.
85
,
2216
2219
(
2000
).
29.
C. W.
Hamman
,
J. C.
Klewicki
, and
R. M.
Kirby
, “
On the Lamb vector divergence in Navier–Stokes flows
,”
J. Fluid Mech.
610
,
261
284
(
2008
).
30.
A.
Sengupta
,
V. K.
Suman
,
T. K.
Sengupta
, and
S.
Bhaumik
, “
An enstrophy-based linear and nonlinear receptivity theory
,”
Phys. Fluids
30
,
054106
(
2018
).
31.
H.
Marmanis
, “
Analogy between the Navier–Stokes equations and Maxwell's equations: Application to turbulence
,”
Phys. Fluids
10
,
1428
1437
(
1998
).
32.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three–dimensional flow fields
,”
Phys. Fluids A
2
,
765
777
(
1990
).
33.
G.
Haller
, “
Lagrangian coherent structures
,”
Annu. Rev. Fluid Mech.
47
,
137
162
(
2015
).
34.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
1975
).
35.
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
36.
D.
Lentink
,
G. F. V.
Heijst
,
F. T.
Muijres
, and
J. L. V.
Leeuwen
, “
Vortex interactions with flapping wings and fins can be unpredictable
,”
Biol. Lett.
6
,
394
397
(
2010
).
37.
R. J.
Bomphrey
,
N. J.
Lawson
,
G. K.
Taylor
, and
A. L. R.
Thomas
, “
Application of digital particle image velocimetry to insect aerodynamics: Measurement of the leading-edge vortex and near wake of a Hawkmoth
,”
Exp. Fluids
40
,
546
554
(
2006
).
38.
F. T.
Muijres
,
L. C.
Johansson
,
Y.
Winter
, and
A.
Hedenstrom
, “
Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization
,”
J. R. Soc., Interface
8
,
1418
1428
(
2011
).
39.
F. T.
Muijres
,
L. C.
Johansson
,
Y.
Winter
, and
A.
Hedenström
, “
Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds
,”
Bioinspiration Biomimetics
9
,
025006
(
2014
).
40.
A. L. R.
Thomas
,
G. K.
Taylor
,
R. B.
Srygley
,
R. L.
Nudds
, and
R. J.
Bomphrey
, “
Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack
,”
J. Exp. Biol.
207
,
4299
4323
(
2004
).
41.
R. J.
Bomphrey
,
N. J.
Lawson
,
N. J.
Harding
,
G. K.
Taylor
, and
A. L. R.
Thomas
, “
The aerodynamics of Manduca sexta: Digital particle image velocimetry analysis of the leading-edge vortex
,”
J. Exp. Biol.
208
,
1079
1094
(
2005
).
42.
F. T.
Muijres
,
L. C.
Johansson
,
R.
Barfield
,
M.
Wolf
,
G. R.
Spedding
, and
A.
Hedenström
, “
Leading-edge vortex improves lift in slow-flying bats
,”
Science
319
,
1250
1253
(
2008
).
43.
U. M. L.
Norberg
and
R. Å.
Norberg
, “
Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size
,”
J. Exp. Biol.
215
,
711
722
(
2012
).
You do not currently have access to this content.