This study used optical fiber-distributed temperature sensors to measure the internal and external temperature distributions of a water-cooled heat pipe. The sensor technology used in this study is fiber optical distributed temperature sensing, a distributed sensing technique based on the naturally occurring Rayleigh backscatter in optical fibers. This measurement technique provides maximum spatial resolution for static and semi-static applications. Using this sensor, the temperature distribution of the heat pipe's internal, external, vapor core, and the wick was measured with a spatial resolution of 0.65 mm, a sampling frequency of 40 Hz, and a temperature resolution of 0.1 °C. Through the measured temperature distribution database, the starting phenomenon, the effective length trend, and the limitation onset were observed. From the results, it is found that a high-temperature peak appears at the evaporator if a high initial power (75 W) is imposed on the heat pipe, even after the heat pipe approaches the normal operating status. The peak is not observed in a slower startup (30 W initial power then slowly increased to 75 W). It is also found that the temperature distributions and effective condenser length of the heat pipe highly depend on the cooling conditions. There are variations in the temperature according to the radial direction of the horizontal heat pipe due to gravity. Lead and lag of the temperature evolution were observed at the onset of the operating limitations.

1.
G. P.
Peterson
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
(
Wiley
,
1994
).
2.
R. S.
Gaugler
, U.S. patent 2,350,348 (
1944
).
3.
G. M.
Grover
,
T. P.
Cotter
, and
G. F.
Erickson
, “
Structures of very high thermal conductance
,”
J. Appl. Phys.
35
(
6
),
1990
1991
(
1964
).
4.
K. N.
Shukla
, “
Heat pipe for aerospace applications—An overview
,”
J. Electron. Cooling Thermal Control
5
,
1
14
(
2015
).
5.
D.
Khrustalev
and
A.
Faghri
, “
Thermal analysis of a micro heat pipe
,”
J. Heat Transfer
116
(
1
),
189
198
(
1994
).
6.
N.
Phan
, “
Flat-evaporator-type loop heat pipe with hydrophilic polytetrafluoroethylene porous membranes
,”
Phys. Fluids
32
(
4
),
047108
(
2020
).
7.
J. W.
Tang
et al, “
Airflow dynamics of human jets: Sneezing and breathing - potential sources of infectious aerosols
,”
PLoS One
8
(
4
),
e59970
(
2013
).
8.
Y. S.
Jeong
,
K. M.
Kim
,
I. G.
Kim
, and
I. C.
Bang
, “
Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant
,”
Appl. Therm. Eng.
90
,
609
618
(
2015
).
9.
M.
Mochizuki
,
R.
Singh
,
T.
Nguyen
, and
T.
Nguyen
, “
Heat pipe based passive emergency core cooling system for safe shutdown of nuclear power reactor
,”
Appl. Therm. Eng.
73
(
1
),
699
706
(
2014
).
10.
J.
Seo
,
I. C.
Bang
, and
J. Y.
Lee
, “
Length effect on entrainment limit of large-L/D vertical heat pipe
,”
Int. J. Heat Mass Transfer
97
,
751
759
(
2016
).
11.
A.
Bushman
et al, “
The Martian surface reactor: An advanced nuclear power station for manned extraterrestrial exploration
,” Report No. MIT-NSA-TR-003,
2004
.
12.
M. S.
El-Genk
and
J.
Tournier
, “
Performance analysis of potassium heat pipes radiator for HP‐STMCs space reactor power system
,”
AIP Conf. Proc.
699
(
1
),
793
805
(
2004
).
13.
A.
Levinsky
,
J.
van Wyk
,
Y.
Arafat
, and
M. C.
Smith
, “
Westinghouse eVinci reactor for off-grid markets
,” paper presented at
American Nuclear Society Winter Meeting
, Orlando, FL,
2018
.
14.
P. R.
Mcclure
,
D. I.
Poston
,
V. R.
Dasari
, and
R. S.
Reid
, “
Design of megawatt power level heat pipe reactors
,” Report No. LA-UR-15-28840, 2015.
15.
D.
Palac
,
M.
Gibson
,
L.
Mason
,
M.
Houts
,
P.
McClure
, and
R.
Robinson
, “
Nuclear systems kilopower overview
,” Report No. GRC-E-DAA-TN29740, 2016.
16.
D. I.
Poston
, “
The heat pipe-operated mars exploration reactor (HOMER)
,”
Technical Report LA-UR-00-5209
,
2000
.
17.
B. H.
Yan
,
C.
Wang
, and
L. G.
Li
, “
The technology of micro heat pipe cooled reactor: A review
,”
Ann. Nucl. Energy
135
,
106948
(
2020
).
18.
A.
Faghri
,
M.
Buchko
, and
Y.
Cao
, “
A study of high-temperature heat pipes with multiple heat sources and sinks: Part I—Experimental methodology and frozen startup profiles
,”
J. Heat Transfer
113
(
4
),
1003
1009
(
1991
).
19.
J.
Seo
and
J. Y.
Lee
, “
Length effect on entrainment limitation of vertical wickless heat pipe
,”
Int. J. Heat Mass Transfer
101
,
373
378
(
2016
).
20.
H.
Wang
,
F.
Min
,
Z.
Xie
,
J.
Li
,
J.
Dai
, and
Y.
Yang
, “
Quantitative study of the control of hypersonic aerodynamics using millisecond pulsed discharges
,”
Phys. Fluids
34
(
2
),
021701
(
2022
).
21.
R. Q.
Xu
,
X.
Chen
,
Z. H.
Shen
,
J.
Lu
, and
X. W.
Ni
, “
A fiber-optic diagnostic technique for mechanical detection of the laser-metal interaction underwater
,”
Phys. Fluids
16
(
3
),
832
835
(
2004
).
22.
M.
Gottlieb
and
G. B.
Brandt
, “
Fiber-optic temperature sensor based on internally generated thermal radiation
,”
Appl. Opt.
20
(
19
),
3408
(
1981
).
23.
A. H.
Hartog
, “
A distributed temperature sensor based on liquid-core optical fibers
,”
J. Lightwave Technol.
1
(
3
),
498
509
(
1983
).
24.
D.
Holler
,
R.
Vaghetto
, and
Y.
Hassan
, “
Water temperature measurements with a Rayleigh backscatter distributed sensor
,”
Opt. Fiber Technol.
55
,
102160
(
2020
).
25.
R.
Manoj
,
M. C.
Kumar
,
R.
Narasimha Rao
,
K.
Rama Narasimha
, and
P. V. S.
Suresh
, “
Performance evaluation of sodium heat pipe through parametric studies
,”
Front. Heat Pipes
3
(
4
),
043003
(
2012
).
26.
A.
Faghri
,
Heat Pipe Science and Technology
(
Taylor & Francis
,
1995
).
27.
J.
Seo
,
D.
Kim
,
H.
Kim
, and
Y. A.
Hassan
, “
Experimental investigation of the hydraulic characteristics of annular type wick structure for heat pipe
,”
paper presented at the 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19),
Brussels
,
Belgium
,
2022
.
28.
J.
Seo
,
D.
Kim
,
H.
Kim
, and
Y. A.
Hassan
, “
Design optimization of gap distance for the capillary limitation of a heat pipe with annular-type wick structure
,”
Phys. Fluids
34
(
6
),
067116
(
2022
).
29.
J.
Seo
,
D.
Kim
,
H.
Kim
, and
Y. A.
Hassan
, “
An experimental investigation on the characteristics of heat pipes with annular type composite wick structure
,”
Nucl. Eng. Des.
390
,
111701
(
2022
).
30.
O.
Arora
,
B.
Lancaster
,
S. R.
Yang
,
R.
Vaghetto
, and
Y. A.
Hassan
, “
Advanced flow and temperature measurements in a forced convection molten salt test loop
,”
Ann. Nucl. Energy
159
,
108269
(
2021
).
31.
S.
Lomperski
,
C.
Gerardi
, and
W. D.
Pointer
, “
Fiber optic distributed temperature sensor mapping of a jet-mixing flow field
,”
Exp. Fluids
56
(
3
),
1
16
(
2015
).
You do not currently have access to this content.