Accurately analyzing wave–structure interactions is crucial for the design and operational safety of ships and marine structures. This paper presents a fully nonlinear potential-flow approach for simulating wave–structure interactions using the newly proposed spectral coupled boundary element method (SCBEM). The SCBEM efficiently models an extensive water body that encompasses structures by establishing a boundary element method (BEM) computational domain solely around the object of interest while accurately simulating the far-field broad water by a spectral layer. To further improve efficiency, graphics processing unit acceleration is hired during iterative solving of the boundary value problem in the already small-sized interior BEM domain. Simulations are conducted to validate the accuracy of the method on cases with strong nonlinear phenomena, including wave run-up on a single cylinder, diffraction of a four-cylinder array, near-trapped modes for closely spaced columns, and gap resonance that occurred in side-by-side offloading. The wave run-up, diffraction wave pattern, near-trapped mode, and gap resonance frequency obtained by the proposed method are in good agreement with data from experiments and published literature. The quite good accuracy and the exceptional computational efficiency of the SCBEM demonstrate its promising potential for more application in practical marine problems.

1.
Z.
Fang
,
L.
Xiao
,
H.
Wei
,
M.
Liu
, and
Y.
Guo
, “
Severe wave run-ups on fixed surface-piercing square column under focused waves
,”
Phys. Fluids
32
,
063308
(
2020
).
2.
Y.
Ding
,
J. H.
Walther
, and
Y.
Shao
, “
Higher-order gap resonance between two identical fixed barges: A study on the effect of water depth
,”
Phys. Fluids
34
,
052113
(
2022
).
3.
S.
Chen
,
W.
Zhao
, and
D.
Wan
, “
On the scattering of focused wave by a finite surface-piercing circular cylinder: A numerical investigation
,”
Phys. Fluids
34
,
035132
(
2022
).
4.
S.
Mirjalili
,
S. S.
Jain
, and
M.
Dodd
, “
Interface-capturing methods for two-phase flows: An overview and recent developments
,” in
Annual Research Briefs
(
Center for Turbulence Research
,
2017
).
5.
T.
Marić
,
D. B.
Kothe
, and
D.
Bothe
, “
Unstructured un-split geometrical volume-of-fluid methods—A review
,”
J. Comput. Phys.
420
,
109695
(
2020
).
6.
A. M.
Miquel
,
A.
Kamath
,
M.
Alagan Chella
,
R.
Archetti
, and
H.
Bihs
, “
Analysis of different methods for wave generation and absorption in a CFD-based numerical wave tank
,”
J. Mar. Sci. Eng.
6
,
73
(
2018
).
7.
C.
Kim
,
A.
Clement
, and
K.
Tanizawa
, “
Recent research and development of numerical wave tanks—A review
,”
Int. J. Offshore Polar Eng.
9
,
241
256
(
1999
).
8.
D.
Fructus
,
D.
Clamond
,
J.
Grue
, and
Ø.
Kristiansen
, “
An efficient model for three-dimensional surface wave simulations: Part I: Free space problems
,”
J. Comput. Phys.
205
,
665
685
(
2005
).
9.
D.
Clamond
,
D.
Fructus
,
J.
Grue
, and
Ø.
Kristiansen
, “
An efficient model for three-dimensional surface wave simulations. Part II: Generation and absorption
,”
J. Comput. Phys.
205
,
686
705
(
2005
).
10.
X.
Zhang
,
B.
Khoo
, and
J.
Lou
, “
Wave propagation in a fully nonlinear numerical wave tank: A desingularized method
,”
Ocean Eng.
33
,
2310
2331
(
2006
).
11.
G.
Ducrozet
,
F.
Bonnefoy
,
D.
Le Touzé
, and
P.
Ferrant
, “
A modified high-order spectral method for wavemaker modeling in a numerical wave tank
,”
Eur. J. Mech.-B
34
,
19
34
(
2012
).
12.
W.
Wang
,
A.
Kamath
,
C.
Pakozdi
, and
H.
Bihs
, “
Investigation of focusing wave properties in a numerical wave tank with a fully nonlinear potential flow model
,”
J. Mar. Sci. Eng.
7
,
375
(
2019
).
13.
I.
Tani
, “
History of boundary layer theory
,”
Annu. Rev. Fluid Mech.
9
,
87
111
(
1977
).
14.
J.-T.
Chen
,
Y.
Lin
,
Y.-T.
Lee
, and
C.
Wu
, “
Water wave interaction with surface-piercing porous cylinders using the null-field integral equations
,”
Ocean Eng.
38
,
409
418
(
2011
).
15.
Z.-J.
Fu
,
Z.-Y.
Xie
,
S.-Y.
Ji
,
C.-C.
Tsai
, and
A.-L.
Li
, “
Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures
,”
Ocean Eng.
195
,
106736
(
2020
).
16.
A.
Gharechae
and
M. J.
Ketabdari
, “
Analytical solution based on BEM to oblique waves scattering by thin arc-shaped permeable barrier applied for array of aquaculture cages
,”
Eng. Anal. Boundary Elem.
134
,
241
258
(
2022
).
17.
C.
Wang
,
S.
Zheng
, and
Y.
Zhang
, “
A heaving system with two separated oscillating water column units for wave energy conversion
,”
Phys. Fluids
34
,
047103
(
2022
).
18.
A.
Sarkar
and
A.
Chanda
, “
Structural performance of a submerged bottom-mounted compound porous cylinder on the water wave interaction in the presence of a porous sea-bed
,”
Phys. Fluids
34
,
092113
(
2022
).
19.
A.
Chanda
,
A.
Sarkar
, and
S. N.
Bora
, “
An analytical study of scattering of water waves by a surface-piercing bottom-mounted compound porous cylinder placed on a porous sea-bed
,”
J. Fluids Struct.
115
,
103764
(
2022
).
20.
A.-j.
Li
and
Y.
Liu
, “
Hydrodynamic performance and energy absorption of multiple spherical absorbers along a straight coast
,”
Phys. Fluids
34
,
117102
(
2022
).
21.
M. S.
Longuet-Higgins
and
E. D.
Cokelet
, “
The deformation of steep surface waves on water—I. A numerical method of computation
,”
Proc. R. Soc. London, A
350
,
1
26
(
1976
).
22.
F.
Coslovich
,
M.
Kjellberg
,
M.
Östberg
, and
C.-E.
Janson
, “
Added resistance, heave and pitch for the KVLCC2 tanker using a fully nonlinear unsteady potential flow boundary element method
,”
Ocean Eng.
229
,
108935
(
2021
).
23.
S.-L.
Sun
,
J.-L.
Wang
,
H.
Li
,
R.-Q.
Chen
, and
C.-J.
Zhang
, “
Investigation on responses and wave climbing of a ship in large waves using a fully nonlinear boundary element method
,”
Eng. Anal. Boundary Elem.
125
,
250
263
(
2021
).
24.
Y.
Tang
,
S.-L.
Sun
, and
H.-L.
Ren
, “
Numerical investigation on a container ship navigating in irregular waves by a fully nonlinear time domain method
,”
Ocean Eng.
223
,
108705
(
2021
).
25.
M.
Irannezhad
,
A.
Eslamdoost
,
M.
Kjellberg
, and
R. E.
Bensow
, “
Investigation of ship responses in regular head waves through a fully nonlinear potential flow approach
,”
Ocean Eng.
246
,
110410
(
2022
).
26.
K.
Nabors
,
F.
Korsmeyer
,
F. T.
Leighton
, and
J.
White
, “
Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory
,”
SIAM J. Sci. Comput.
15
,
713
735
(
1994
).
27.
Y.-L.
Shao
and
O. M.
Faltinsen
, “
Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2012
), Vol.
44915
, pp.
369
380
.
28.
J. C.
Harris
,
E.
Dombre
,
M.
Benoit
,
S. T.
Grilli
, and
K. I.
Kuznetsov
, “
Nonlinear time-domain wave-structure interaction: A parallel fast integral equation approach
,”
Int. J. Numer. Methods Fluids
94
,
188
222
(
2022
).
29.
J. R.
Phillips
and
J. K.
White
, “
A precorrected-FFT method for electrostatic analysis of complicated 3-D structures
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
16
,
1059
1072
(
1997
).
30.
H.
Yan
and
Y.
Liu
, “
An efficient high-order boundary element method for nonlinear wave–wave and wave-body interactions
,”
J. Comput. Phys.
230
,
402
424
(
2011
).
31.
W.
Li
,
W.
Chen
, and
Z.
Fu
, “
Precorrected-FFT accelerated singular boundary method for large-scale three-dimensional potential problems
,”
Commun. Comput. Phys.
22
,
460
472
(
2017
).
32.
P. C.
De Haas
and
P. J.
Zandbergen
, “
The application of domain decomposition to time-domain computations of nonlinear water waves with a panel method
,”
J. Comput. Phys.
129
,
332
344
(
1996
).
33.
W.
Bai
and
R.
Eatock Taylor
, “
Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition
,”
Appl. Ocean Res.
29
,
55
71
(
2007
).
34.
T.
Geng
,
H.
Liu
, and
F.
Dias
, “
Solitary-wave loads on a three-dimensional submerged horizontal plate: Numerical computations and comparison with experiments
,”
Phys. Fluids
33
,
037129
(
2021
).
35.
A. P.
Engsig-Karup
,
M. G.
Madsen
, and
S. L.
Glimberg
, “
A massively parallel GPU-accelerated model for analysis of fully nonlinear free surface waves
,”
Int. J. Numer. Methods Fluids
70
,
20
36
(
2012
).
36.
Y.-L.
Shao
and
O. M.
Faltinsen
, “
A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics
,”
J. Comput. Phys.
274
,
312
332
(
2014
).
37.
X.
Feng
and
W.
Bai
, “
Wave resonances in a narrow gap between two barges using fully nonlinear numerical simulation
,”
Appl. Ocean Res.
50
,
119
129
(
2015
).
38.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
194
(
1972
).
39.
J.
Romate
, “
Absorbing boundary conditions for free surface waves
,”
J. Comput. Phys.
99
,
135
145
(
1992
).
40.
J. D.
Fenton
, “
A fifth-order stokes theory for steady waves
,”
J. Waterw., Port, Coastal, Ocean Eng.
111
,
216
234
(
1985
).
41.
K.
Shi
,
R.
Zhu
, and
D.
Xu
, “
A spectral coupling layer technique for the simulation of nonlinear surface gravity waves
,”
Ocean Eng.
(unpublished).
42.
D. G.
Dommermuth
and
D. K. P.
Yue
, “
A high-order spectral method for the study of nonlinear gravity waves
,”
J. Fluid Mech.
184
,
267
288
(
1987
).
43.
B. J.
West
,
K. A.
Brueckner
,
R. S.
Janda
,
D. M.
Milder
, and
R. L.
Milton
, “
A new numerical method for surface hydrodynamics
,”
J. Geophys. Res.
92
,
11803
, https://doi.org/10.1029/JC092iC11p11803 (
1987
).
44.
X.
Zhang
,
P.
Bandyk
, and
R. F.
Beck
, “
Seakeeping computations using double-body basis flows
,”
Appl. Ocean Res.
32
,
471
482
(
2010
).
45.
J. L.
Hess
and
A. O.
Smith
, “
Calculation of potential flow about arbitrary bodies
,”
Prog. Aerosp. Sci.
8
,
1
138
(
1967
).
46.
J.
Lyness
and
D.
Jespersen
, “
Moderate degree symmetric quadrature rules for the triangle
,”
IMA J. Appl. Math.
15
,
19
32
(
1975
).
47.
P.
Atkinson
and
S.
McIntosh-Smith
, “
On the performance of parallel tasking runtimes for an irregular fast multipole method application
,” in
Scaling OpenMP for Exascale Performance and Portability: 13th International Workshop on OpenMP (IWOMP 2017)
,
Stony Brook, NY
, 20–22 September 2017 (
Springer
,
2017
), pp.
92
106
.
48.
Ocean Engineering Committee
, “
Final report and recommendations to the 27th ITTC
,” in Proceedings of the 27th International Towing Tank Conference (2014), Vol. 3, pp.
263
331
.
49.
L.
Sun
,
J.
Zang
,
L.
Chen
,
R. E.
Taylor
, and
P.
Taylor
, “
Regular waves onto a truncated circular column: A comparison of experiments and simulations
,”
Appl. Ocean Res.
59
,
650
662
(
2016
).
50.
C.
Swan
and
R.
Sheikh
, “
The interaction between steep waves and a surface-piercing column
,”
Philos. Trans. R. Soc., A
373
,
20140114
(
2015
).
51.
W.
Zhao
,
Z.
Pan
,
F.
Lin
,
B.
Li
,
P. H.
Taylor
, and
M.
Efthymiou
, “
Estimation of gap resonance relevant to side-by-side offloading
,”
Ocean Eng.
153
,
1
9
(
2018
).
You do not currently have access to this content.