Due to the complex aerodynamic interaction, the safe separation of two stages is one of the challenges for the successful launch of a two-stage-to-orbit (TSTO) vehicle. The unsteady hypersonic flow past the parallel-staged TSTO model during stage separation at Ma = 6.7 and Re = 8.86 × 105 m−1 is numerically studied using laminar flow simulation. The TSTO model consisted of a waverider and a spaceplane as booster and orbiter, respectively. The effect of the center of gravity (CoG) of the orbiter on the unsteady aerodynamic interference during stage separation of TSTO is analyzed in detail with 0.65 ≤ lCoG/lo ≤ 0.80. In addition, the aerodynamic characteristics, dynamic behaviors, and unsteady wall pressure variation are compared in different cases. The results show that the CoG regime is limited to 5% of the orbiter length for absolutely safe separation, i.e., 0.70 < lCoG/lo < 0.75. As for the unsuccessful separation, the orbiter tends to fly nose-down if lCoG/lo ≤ 0.70 while tending to pitch or somersault when lCoG/lo = 0.80. Furthermore, the pitching moment of the orbiter, which is influenced by the interstage shock wave–boundary layer interaction and shock–shock interaction, dominates the separation safety, and the specific flow mechanisms concerning the separation behavior associated with aerodynamic interference in different cases are analyzed in detail.

1.
S.
Weingertner
, “
SAENGER: The reference concept of the German hypersonics technology program
,” AIAA Paper No. 93-5161,
1993
.
2.
U.
Mehta
and
J.
Bowles
, “
A two-stage-to-orbit spaceplane concept with growth potential
,” AIAA Paper No. 2001-1795,
2001
.
3.
L.
McKinney
,
D.
Farrell
,
T.
Bogar
, and
J.
Stemler
, “
Investigation of TSTO propulsion system options
,” AIAA Paper No. 2006-8054,
2006
.
4.
Y. P.
Wang
,
H.
Ozawa
,
H.
Koyama
, and
Y.
Nakamura
, “
Abort separation of launch escape system using aerodynamic interference
,”
AIAA J.
51
,
270
275
(
2013
).
5.
S. J.
Laurence
,
N. J.
Parziale
, and
R.
Deiterding
, “
Dynamical separation of spherical bodies in supersonic flow
,”
J. Fluid Mech.
713
,
159
182
(
2012
).
6.
G. X.
Xiang
,
C.
Wang
,
H. H.
Teng
, and
Z. L.
Jiang
, “
Shock/shock interactions between bodies and wings
,”
Chin. J. Aeronaut.
31
,
255
261
(
2018
).
7.
X. P.
Xue
,
Y.
Nishiyama
,
Y.
Nakamura
,
K.
Mori
,
Y. P.
Wang
, and
C.
Wen
, “
High-speed unsteady flows past two-body configurations
,”
Chin. J. Aeronaut.
31
,
54
64
(
2018
).
8.
M.
Patel
and
S.
Navarro-Martinez
, “
Heat transfer to proximal cylinders in hypersonic flow
,”
Phys. Fluids
35
,
036125
(
2023
).
9.
D. G.
Wang
,
G. L.
Han
,
M. K.
Liu
, and
Z. L.
Jiang
, “
Numerical investigation on unsteady interaction of oblique/bow shock during rotation based on non-inertial coordinate system
,”
Phys. Fluids
34
,
121703
(
2022
).
10.
G.
Kumar
and
A.
De
, “
Modes of unsteadiness in shock wave and separation region interaction in hypersonic flow over a double wedge geometry
,”
Phys. Fluids
33
,
076107
(
2021
).
11.
G.
Kumar
and
A.
De
, “
Role of corner flow separation in unsteady dynamics of hypersonic flow over a double wedge geometry
,”
Phys. Fluids
33
(
3
),
036109
(
2021
).
12.
F.
Lozano
,
J.
Saavedra
, and
G.
Paniagua
, “
Aero-thermal numerical characterization of blunt fin-induced shock wave–boundary layer interaction and its control through leading-edge cooling injection
,”
Phys. Fluids
34
(
9
),
096110
(
2022
).
13.
J. H.
Fan
,
J. A.
Hao
, and
C. Y.
Wen
, “
Nonlinear interactions of global instabilities in hypersonic laminar flow over a double cone
,”
Phys. Fluids
34
(
12
),
126108
(
2022
).
14.
F. L.
Tong
,
J.
Lai
,
J. Y.
Duan
,
S. W.
Dong
,
X. X.
Yuan
, and
X. L.
Li
, “
Effect of interaction strength on recovery downstream of incident shock interactions
,”
Phys. Fluids
34
(
12
),
125127
(
2022
).
15.
C. E.
Sousa
,
R.
Deiterding
, and
S. J.
Laurence
, “
Dynamics of a spherical body shedding from a hypersonic ramp. I. Inviscid flow
,”
J. Fluid Mech.
906
,
A28
(
2021
).
16.
C.
Butler
,
T.
Whalen
,
C.
Sousa
, and
S. J.
Laurence
, “
Dynamics of a spherical body shedding from a hypersonic ramp. II. Viscous flow
,”
J. Fluid Mech.
906
,
A29
(
2021
).
17.
Y.
Wang
,
Y. P.
Wang
, and
Z. L.
Jiang
, “
Numerical investigation of aerodynamic separation schemes for two-stage-to-orbit-like two-body system
,”
Aerosp. Sci. Technol.
131
(
Part A
),
107995
(
2022
).
18.
Y.
Wang
,
Y. P.
Wang
,
C.
Wang
, and
Z. L.
Jiang
, “
Numerical study of the longitudinal stage separation for parallel-stage two-stage-to-orbit vehicle
,”
Acta Aeronaut. Astronaut. Sin.
44
,
127634
(
2023
).
19.
Y.
Wang
,
Y. P.
Wang
,
C.
Wang
, and
Z. L.
Jiang
, “
Numerical investigation on longitudinal stage separation of spiked two-stage-to-orbit vehicle
,”
J. Spacecr. Rockets
60
,
215
229
(
2023
).
20.
Y.
Wang
,
Y. P.
Wang
, and
Z. L.
Jiang
, “
Experimental study of longitudinal stage separation of two-body configuration in shock tunnel
,”
AIAA J.
60
,
6940
6946
(
2022
).
21.
Y.
Wang
,
Y. P.
Wang
, and
Z. L.
Jiang
, “
Research on the test technology of longitudinal stage separation for TSTO in shock tunnel
,”
Acta Aeronaut. Astronaut. Sin.
44
,
128126
(
2023
).
22.
J. P.
Decker
, “
Aerodynamic interference effects caused by parallel-staged simple aerodynamic configurations at Mach numbers of 3 and 6
,”
Report No. NASA-TN-D-5379
(
NASA
,
1969
).
23.
J. P.
Decker
and
A.
Wilhite
, “
Technology and methodology of separating two similar size aerospace vehicles within the atmosphere
,” AIAA Paper No. 75-29,
1975
.
24.
W.
Schroder
and
G.
Hartmann
, “
Analysis of inviscid and viscous hypersonic flows past a two-stage spacecraft
,”
J. Spacecr. Rockets
30
,
8
13
(
1993
).
25.
T.
Cvrlje
,
C.
Breitsamter
, and
B.
Laschka
, “
Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions
,”
Aerosp. Sci. Technol.
4
,
157
171
(
2000
).
26.
W.
Bordelon
,
A.
Frost
, and
D.
Reed
, “
Stage separation wind tunnel tests of a generic TSTO launch vehicle
,” AIAA Paper No. 2003-4227,
2003
.
27.
K.
Murphy
,
G.
Erickson
, and
S.
Goodliff
, “
Experimental stage separation tool development in Langley's unitary plan wind tunnel
,” AIAA Paper No. 2004-4727,
2004
.
28.
H.
Ozawa
,
K.
Hanai
,
K.
Kitamura
,
K.
Mori
, and
Y.
Nakamura
, “
Experimental investigation of shear-layer/body interactions in TSTO at hypersonic speeds
,” AIAA Paper No. 2008-723,
2008
.
29.
H.
Ozawa
,
K.
Kitamura
,
K.
Hanai
,
K.
Mori
, and
Y.
Nakamura
, “
Unsteady aerodynamic interaction between two bodies at hypersonic speed
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
53
,
114
121
(
2010
).
30.
Y.
Wang
,
Y. P.
Wang
,
X. P.
Xue
, and
Z. L.
Jiang
, “
Numerical investigation on safe stage separation problem of a TSTO model at Mach 7
,”
Chin. J. Theor. Appl. Mech.
54
,
526
542
(
2022
).
31.
J. Z.
Lin
,
F. T.
Xie
,
J.
Zhong
,
D. Y.
Zou
, and
Y. J.
Pi
, “
Dual-body synchronous captive trajectory test technique in hypersonic wind tunnel
,”
Acta Aerodyn. Sin.
40
,
1
10
(
2022
).
32.
S.
Chakravarthy
, “
A unified-grid finite volume formulation for computational fluid dynamics
,”
Int. J. Numer. Methods Fluids
31
,
309
323
(
1999
).
33.
H.
Luo
,
J.
Baum
, and
R.
Lohner
, “
Extension of HLLC scheme for flows at all speeds
,” AIAA Paper No. 2003-3840,
2003
.
34.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
New York
,
2009
).
35.
W.
Sutherland
, “
The viscosity of gases and molecular force
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
36
,
507
531
(
1893
).
36.
J. R.
Edwards
, “
An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows
,”
J. Comput. Phys.
123
,
84
95
(
1996
).
37.
H.
Struchtrup
,
Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory
(
Springer Inc
.,
Germany
,
2005
).
38.
Z. H.
Wang
,
Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects
, Springer thesis (
Springer
,
Beijing
,
2014
).
39.
Y. B.
Gan
,
A. G.
Xu
,
G. C.
Zhang
,
Y. D.
Zhang
, and
S.
Succi
, “
Discrete Boltzmann trans-scale modeling of high-speed compressible flows
,”
Phys. Rev. E
97
,
053312
(
2018
).
40.
M. K.
Liu
,
G. L.
Han
, and
Z. L.
Jiang
, “
Experimental study on the evolution of mode waves in laminar boundary layer on a large-scale flat plate
,”
Phys. Fluids
34
,
013612
(
2022
).
41.
K.
Kitamura
,
T.
Nakamura
,
I.
Men'shov
, and
Y.
Nakamura
, “
CFD analysis of aerodynamic interference between a delta wing and a hemisphere-cylinder
,” AIAA Paper No. 2004-1378,
2004
.
42.
W.
Schroeder
and
F.
Mergler
, “
Investigation of the flowfield over parallel-arranged launch vehicles
,” AIAA Paper No. 93-3060,
1993
.
43.
S.
Tian
,
J.
Fu
, and
J.
Chen
, “
A numerical method for multi-body separation with collisions
,”
Aerosp. Sci. Technol.
109
,
106426
(
2021
).
44.
M. S.
Holden
,
M.
MacLean
,
T. P.
Wadhams
, and
A.
Dufrene
, “
Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for ‘blind’ code validation studies
,” AIAA Paper No. 2013-2837,
2013
.
45.
R. Y.
Mehrnaz
and
K.
Doyle
, “
Assessment of CFD capability for hypersonic shock wave laminar boundary layer interactions
,”
Aerospace
4
,
4020025
(
2017
).
46.
R. R.
Heim
, “
CFD wing/pylon/finned store mutual interference wind tunnel experiment
,”
Report No. AEDC-TSR-91-P4
(
NASA
,
1991
).
47.
D.
Snyder
,
E.
Koutsavdis
, and
J.
Anttonen
, “
Transonic store separation using unstructured CFD with dynamic meshing
,” AIAA Paper No. 2003-3919,
2003
.
48.
C. Q.
Liu
,
Y. S.
Gao
,
S. L.
Tian
, and
X. R.
Dong
, “
Rortex—a new vortex vector definition and vorticity tensor and vector decompositions
,”
Phys. Fluids
30
,
035103
(
2018
).
49.
Y. S.
Gao
and
C. Q.
Liu
, “
Rortex and comparison with eigenvalue-based vortex identification criteria
,”
Phys. Fluids
30
,
085107
(
2018
).
50.
E. H.
Hirschel
and
C.
Weiland
,
Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles
(
Springer Inc
.,
Berlin
,
2009
).
51.
H.
Babinsky
and
J. K.
Harvey
,
Shock Wave-Boundary-Layer Interactions
(
Cambridge University Press
,
New York
,
2011
).
You do not currently have access to this content.