Radio frequency blackout indicates the communication interruption between signal monitoring sites and re-entry vehicles; it is a serious threat to the safety of astronauts and the space exploration missions. In this study, a surface catalytic model coupled with a thermochemical non-equilibrium computational fluid dynamic model is developed to study the catalytic wall effect on the plasma sheath of a hypersonic re-entry vehicle. The mechanism of the surface catalytic effect on the plasma sheath of a re-entry capsule is revealed by a comparative study. The flow-field characteristics simulated under conditions of the full-catalytic and non-catalytic walls are compared and discussed for the hypersonic atmospheric re-entry capsule at different altitudes. The chemical and physical mechanisms behind the surface catalytic effect of the re-entry capsule are analyzed. The experimental data of Radio Attenuation Measurement-C-II are used to validate the numerical model established in the present study. It is found that the numerical results simulated with the fully catalytic wall are more consistent with the experimental data. Near the capsule wall, the mole fractions of the species N, O, N+, and O+ decrease as the catalytic recombination coefficient increases. Because of the surface catalytic effect, the communication black is mitigated due to the reduction of the electron number density in the wake zone of the capsule.

1.
H.
Chen
,
B.
Zhang
, and
B.
Zhang
, “
Role of chemical reactions in the stagnation point heat flux of rarefied hypersonic cylinder flows
,”
Phys. Fluids
32
,
096105
(
2020
).
2.
S.
Deep
and
G.
Jagadeesh
, “
Aerothermodynamic effects of controlled heat release within the hypersonic shock layer around a large angle blunt cone
,”
Phys. Fluids
30
,
106103
(
2018
).
3.
H.
Yang
,
H.
Liang
,
C.
Zhang
,
Y.
Wu
,
H.
Zong
,
Z.
Su
,
Y.
Kong
,
D.
Zhang
, and
Y.
Li
, “
Investigation of hypersonic cone boundary layer stability regulation with plasma actuation
,”
Phys. Fluids
35
,
024112
(
2023
).
4.
J.
Yu
,
Y.
Zhu
,
D.
Gu
, and
C.
Lee
, “
A thermoacoustic heat pump driven by acoustic waves in a hypersonic boundary layer
,”
Phys. Fluids
34
,
011703
(
2022
).
5.
Y.
Zhu
,
H.
Yuan
, and
C.
Lee
, “
Ultrafast tomographic particle image velocimetry investigation on hypersonic boundary layers
,”
Phys. Fluids
32
,
094103
(
2020
).
6.
H.
Zong
and
M.
Kotsonis
, “
Interaction between plasma synthetic jet and subsonic turbulent boundary layer
,”
Phys. Fluids
29
,
045104
(
2017
).
7.
X.
Geng
,
W.
Zhang
,
Z.
Shi
,
Z.
Li
,
Q.
Sun
, and
Z.
Sun
, “
Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects
,”
Phys. Fluids
33
,
067113
(
2021
).
8.
T.
Mankodi
and
R.
Myong
, “
Quasi-classical trajectory-based non-equilibrium chemical reaction models for hypersonic air flows
,”
Phys. Fluids
31
,
106102
(
2019
).
9.
B.
Parent
, “
Electron heating and cooling in hypersonic flows
,”
Phys. Fluids
33
,
046105
(
2021
).
10.
Y.
Takahashi
and
K.
Yamada
, “
Aerodynamic-heating analysis of sample-return capsule in future trojan-asteroid exploration
,”
J. Thermophys. Heat Transfer
32
,
547
559
(
2018
).
11.
Y.
Tian
,
Y.
Han
,
Y.
Ling
, and
X.
Ai
, “
Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency
,”
Phys. Plasmas
21
,
023301
(
2014
).
12.
R.
Stenzel
and
J.
Urrutia
, “
A new method for removing the blackout problem on reentry vehicles
,”
J. Appl. Phys.
113
,
103303
(
2013
).
13.
Y.
Takahashi
,
T.
Ohashi
,
N.
Oshima
,
Y.
Nagata
, and
K.
Yamada
, “
Aerodynamic instability of an inflatable aeroshell in suborbital re-entry
,”
Phys. Fluids
32
,
075114
(
2020
).
14.
M.
Yu
,
Z.
Qiu
,
B.
Lv
, and
Y.
Takahashi
, “
Multiphysics mathematical modeling and flow field analysis of an inflatable membrane aeroshell in suborbital reentry
,”
Mathematics
10
,
832
(
2022
).
15.
Y.
Takahashi
,
D.
Ha
,
N.
Oshima
,
K.
Yamada
,
T.
Abe
, and
K.
Suzuki
, “
Aerodecelerator performance of flare-type membrane inflatable vehicle in suborbital reentry
,”
J. Spacecr. Rockets
54
,
993
1004
(
2017
).
16.
Y.
Takahashi
,
K.
Yamada
,
T.
Abe
, and
K.
Suzuki
, “
Aerodynamic heating around flare-type membrane inflatable vehicle in suborbital reentry demonstration flight
,”
J. Spacecr. Rockets
52
,
1530
1541
(
2015
).
17.
Y.
Takahashi
,
K.
Yamada
, and
T.
Abe
, “
Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry
,”
J. Spacecr. Rockets
51
,
430
441
(
2014
).
18.
K.
Xie
,
M.
Yang
,
B.
Bai
,
X.
Li
,
H.
Zhou
, and
L.
Guo
, “
Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control
,”
J. Appl. Phys.
119
,
023301
(
2016
).
19.
C.
Wen
, “
Study on the composite effect of plasma sheath and window environment on antenna performance of near space vehicle
,” M.S. thesis (
University of Electronic Science and Technology
,
2019
).
20.
E.
Gillman
,
J.
Foster
, and
I.
Blankson
, “
Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation
,”
Report No. NASA/TM-2010-216220
,
2010
.
21.
H.
Takasawa
,
Y.
Takahashi
,
N.
Oshima
, and
H.
Kihara
, “
Experimental demonstration and mechanism of mitigating reentry blackout via surface catalysis effects
,”
J. Phys. D
54
,
225201
(
2021
).
22.
M.
Yu
,
Z.
Qiu
,
B.
Lv
, and
Z.
Wang
, “
Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
,”
Chin. Phys. B
31
,
094702
(
2022
).
23.
M.
Jung
,
H.
Kihara
,
K.
Abe
, and
Y.
Takahashi
, “
Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry
,”
J. Korean Phys. Soc.
68
,
1295
1306
(
2016
).
24.
C.
Curtiss
and
J.
Hirschfelder
, “
Transport properties of multicomponent gas mixtures
,”
J. Chem. Phys.
17
,
550
555
(
1949
).
25.
R.
Gupta
,
J.
Yos
, and
R.
Thompson
, “
A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K
,”
Report No. NASA-RP-1232
(
National Aeronautics and Space Administration
,
1990
).
26.
J.
Yos
, “
Transport properties of nitrogen, hydrogen, oxygen, and air to 30000 K
,”
Report No. NASA-TRAD-TM-63-7
(
National Aeronautics and Space
Administration,
1963
).
27.
R.
Devoto
, “
Simplified expressions for the transport properties of ionized monatomic gases
,”
Phys. Fluids
10
,
2105
(
1967
).
28.
S.
Ghorui
and
A.
Das
, “
Collision integrals for charged-charged interaction in two-temperature non-equilibrium plasma
,”
Phys. Plasmas
20
,
093504
(
2013
).
29.
M.
Yu
,
H.
Kihara
,
K.
Abe
, and
Y.
Takahashi
, “
Computation and analysis of the electron transport properties for nitrogen and air inductively-coupled plasmas
,”
J. Korean Phys. Soc.
66
,
1833
1840
(
2015
).
30.
M.
Yu
,
Y.
Li
,
Z.
Wang
,
G.
Chen
, and
X.
Wei
, “
Effects of the working parameters on the flow-field numerical results for a medium-power ICP wind tunnel
,”
Phys. Plasmas
27
,
093507
(
2020
).
31.
M.
Yu
,
K.
Yamada
,
K.
Liu
, and
T.
Zhao
, “
Flow field analysis of the supersonic nitrogen inductively coupled plasma using a nonequilibrium MHD model
,”
AIP Adv.
9
,
015120
(
2019
).
32.
M.
Yu
,
K.
Yamada
,
Y.
Takahashi
,
K.
Liu
, and
T.
Zhao
, “
Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas
,”
Phys. Plasmas
23
,
123523
(
2016
).
33.
M.
Yu
,
Z.
Qiu
,
B.
Zhong
, and
Y.
Takahashi
, “
Numerical simulation of thermochemical non-equilibrium flow-field characteristics around a hypersonic atmospheric reentry vehicle
,”
Phys. Fluids
34
,
126103
(
2022
).
34.
M.
Yu
,
W.
Wang
,
J.
Yao
, and
B.
Zheng
, “
A chemical kinetic model including 54 reactions for modeling air nonequilibrium inductively coupled plasmas
,”
J. Korean Phys. Soc.
73
,
1519
1528
(
2018
).
35.
M.
Dunn
and
S.
Kang
, “
Theoretical and experimental studies of reentry plasmas
,”
Report No. NASA-CR-2232
,
1973
.
36.
C.
Park
, “
Review of chemical-kinetic problems of future NASA missions I-earth entries
,”
J. Thermophys. Heat Transfer
7
,
385
398
(
1993
).
37.
M.
Yu
, “
Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma
,”
Acta Phys. Sin.
68
,
185202
(
2019
).
38.
C.
Park
,
R.
Jaffe
, and
H.
Partridge
, “
Chemical-kinetic parameters of hyperbolic earth entry
,”
J. Thermophys. Heat Transfer
15
,
76
90
(
2001
).
39.
C.
Park
, “
Rotational relaxation of N2 behind a strong shock wave
,”
J. Thermophys. Heat Transfer
18
,
527
533
(
2004
).
40.
R.
Millikan
and
D.
White
, “
Systematics of vibrational relaxation
,”
J. Chem. Phys.
39
,
3209
3213
(
1963
).
41.
S.
Lazdinis
and
S.
Petrie
, “
Free electron and vibrational temperature nonequilibrium in high temperature nitrogen
,”
Phys. Fluids
17
,
1539
(
1974
).
42.
W.
Vincenti
,
C.
Kruger
, and
J.
Teichmann
, “
Introduction to physical gas dynamics
,”
Phys. Today
19
(
10
),
95
95
(
1966
).
43.
J.
Appleton
and
K.
Bray
, “
The conservation equations for a non-equilibrium plasma
,”
J. Fluid Mech.
20
,
659
672
(
1964
).
44.
P.
Gnoffo
,
R.
Gupta
, and
J.
Shin
,
Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium
(
National Aeronautics and Space Administration
,
1989
).
45.
A.
Buchachenko
,
A.
Kroupnov
, and
V.
Kovalev
, “
Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach
,”
Acta Astronaut.
113
,
142
148
(
2015
).
46.
V.
Kovalev
,
A.
Kroupnov
, and
A.
Vetchinkin
, “
Quantum mechanics calculation of catalytic properties of a copper sensor for prediction of flow characteristics in plasmatron
,”
Acta Astronaut.
117
,
408
413
(
2015
).
47.
V.
Kovalev
,
A.
Krupnov
,
M.
Pogosbekyan
, and
L.
Sukhanov
, “
Analysis of heterogeneous recombination of oxygen atoms on aluminum oxide by methods of quantum mechanics and classical dynamics
,”
Acta Astronaut.
68
,
686
690
(
2011
).
48.
A.
Kroupnov
and
M.
Pogosbekian
, “
Interaction of dissociated air with the surface of β-cristobalite material
,”
Acta Astronaut.
203
,
454
468
(
2023
).
49.
M.
Jung
, “
Numerical study of plasma flows and radio frequency blackout for reentry vehicle
,” Ph.D. thesis (
Kyushu University
,
2018
).
50.
M.
Jung
,
H.
Kihara
,
K.
Abe
, and
Y.
Takahashi
, “
Reentry blackout prediction for atmospheric reentry demonstrator mission considering uncertainty in chemical reaction rate model
,”
Phys. Plasmas
25
,
013507
(
2018
).
51.
Y.
Takahashi
,
N.
Enoki
,
H.
Takasawa
, and
N.
Oshima
, “
Surface catalysis effects on mitigation of radio frequency blackout in orbital reentry
,”
J. Phys. D
53
,
235203
(
2020
).
52.
V.
Betelin
,
A.
Kushnirenko
,
N.
Smirnov
,
V.
Nikitin
,
V.
Tyurenkova
, and
L.
Stamov
, “
Numerical investigations of hybrid rocket engines
,”
Acta Astronaut.
144
,
363
370
(
2018
).
53.
V.
Tyurenkova
and
L.
Stamov
, “
Flame propagation in weightlessness above the burning surface of material
,”
Acta Astronaut.
159
,
342
348
(
2019
).
54.
A.
Kushnirenko
,
L.
Stamov
,
V.
Tyurenkova
,
M.
Smirnova
, and
E.
Mikhalchenko
, “
Three-dimensional numerical modeling of a rocket engine with solid fuel
,”
Acta Astronaut.
181
,
544
551
(
2021
).
55.
Y.
Takahashi
,
K.
Yamada
, and
T.
Abe
, “
Prediction performance of blackout and plasma attenuation in atmospheric reentry demonstrator mission
,”
J. Spacecr. Rockets
51
,
1954
1964
(
2014
).
56.
A.
Jameson
and
S.
Yoon
, “
Lower-upper implicit schemes with multiple grids for the Euler equations
,”
AIAA J.
25
,
929
935
(
1987
).
57.
T. R. A.
Bussing
and
E. M.
Murman
, “
Finite-volume method for the calculation of compressible chemically reacting flows
,”
AIAA J.
26
,
1070
1078
(
1988
).
58.
S.
Surzhikov
, “
Two-dimensional numerical analysis of flow ionization in the RAM-C-II flight experiment
,”
Russ. J. Phys. Chem. B
9
,
69
86
(
2015
).
59.
R.
Gupta
,
J.
Moss
, and
J.
Price
, “
Assessment of thermochemical nonequilibrium and slip effects for orbital re-entry experiment
,”
J. Thermophys. Heat Transfer
11
,
562
569
(
1997
).
You do not currently have access to this content.