A statistical particle path tracking method is applied to a hollow rotating detonation engine (RDE) with a Laval nozzle, and the flow field characteristics are investigated. The in-house solver BYRFoam based on OpenFOAM is used, and a large-area outflow field at the tail of the combustor and an array of injection holes are implemented. The influence mechanism of the tail nozzle on the internal and external flow fields of the hollow RDE is revealed. The results confirm that the tail nozzle helps suppress the rotating shock wave of the outflow field, which can make the exhaust plume structure more symmetrical. The influencing factors of the flow field of RDE with nozzle are studied. The results show that the farther the equivalence ratio deviates from 1, the closer the normal shock wave is from the nozzle outlet. The paths of representative flow particles are tracked, and the paths and physical properties of flow particles from different injection areas are obtained and compared. The results demonstrate that the overall movement trend of particles along the circumferential direction is opposite to that of the detonation wave, and some particles entering the combustor from the inner hole enter the virtual inner cylinder. The particle paths of hollow RDE without nozzle and RDE with radial injection method are studied. The results show that the particle circumferential deflection angle is smaller for RDE without nozzle and larger for RDE with radial injection method compared to RDE with nozzle and axial injection. A statistical tracking method for a large number of particles is proposed to obtain the flow characteristics of the gas in the combustor. The results confirm that the average circumferential deflection angle and the average residence time and its dispersion degree of the inner hole gas are larger than that of the outer hole gas. Flow particles with smaller initial radial position coordinates produce more curved particle traces. A thermodynamic statistical method for a large number of particles and the concept of a maximum work–heat ratio are used to analyze the macroscopic thermodynamic cycle characteristics of the gas. The results reveal that the maximum net mechanical work and the maximum work–heat ratio of the outer hole particles are larger than those of the inner hole particles. The gas entering the combustor from the outer hole has a greater proportion of chemical energy converted into useful work and a better expansion effect.

1.
M.
Luan
,
S.
Zhang
,
Z.
Xia
,
S.
Yao
, and
J.-P.
Wang
, “
Analytical and numerical study of the expansion effect on the velocity deficit of rotating detonation waves
,”
Combust. Theory Modell.
24
,
761
(
2020
).
2.
B.
Voitsekhovskii
, “
Stationary spin detonation
,”
Sov. J. Appl. Mech. Tech. Phys.
3
,
157
(
1960
).
3.
F. A.
Bykovskii
and
V. V.
Mitrofanov
, “
Detonation combustion of a gas mixture in a cylindrical chamber
,”
Combust. Explos. Shock Waves
16
,
570
(
1981
).
4.
F. A.
Bykovskii
and
E. F.
Vedernikov
, “
Continuous detonation combustion of an annular gas-mixture layer
,”
Combust., Explos., Shock Waves
32
,
489
(
1996
).
5.
F. A.
Bykovskii
and
E. F.
Vedernikov
, “
Continuous detonation of a subsonic flow of a propellant
,”
Combust., Explos., Shock Waves
39
,
323
(
2003
).
6.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
(
2006
).
7.
V.
Anand
,
A. St.
George
,
R.
Driscoll
, and
E.
Gutmark
, “
Characterization of instabilities in a rotating detonation combustor
,”
Int. J. Hydrogen Energy
40
,
16649
(
2015
).
8.
R.
Bluemner
,
M. D.
Bohon
,
C. O.
Paschereit
, and
E. J.
Gutmark
, “
Counter-rotating wave mode transition dynamics in an RDC
,”
Int. J. Hydrogen Energy
44
,
7628
(
2019
).
9.
R.
Bluemner
,
M. D.
Bohon
,
C. O.
Paschereit
, and
E. J.
Gutmark
, “
Effect of inlet and outlet boundary conditions on rotating detonation combustion
,”
Combust. Flame
216
,
300
(
2020
).
10.
J.
Koch
, “
Data-driven surrogates of rotating detonation engine physics with neural ordinary differential equations and high-speed camera footage
,”
Phys. Fluids
33
,
091703
(
2021
).
11.
M.
Zhao
and
H.
Zhang
, “
Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures
,”
Fuel
275
,
117986
(
2020
).
12.
A.
Kawasaki
,
T.
Inakawa
,
J.
Kasahara
,
K.
Goto
,
K.
Matsuoka
,
A.
Matsuo
, and
I.
Funaki
, “
Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster
,”
Proc. Combust. Inst.
37
,
3461
(
2019
).
13.
N. N.
Smirnov
,
V. F.
Nikitin
,
L. I.
Stamov
,
E. V.
Mikhalchenko
, and
V. V.
Tyurenkova
, “
Three-dimensional modeling of rotating detonation in a ramjet engine
,”
Acta Astronaut.
163
,
168
(
2019
).
14.
D.
Shen
,
M.
Cheng
,
K.
Wu
,
Z.
Sheng
, and
J.
Wang
, “
Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor
,”
Acta Astronaut.
193
,
90
(
2022
).
15.
B. A.
Rankin
,
D. R.
Richardson
,
A. W.
Caswell
,
A. G.
Naples
,
J. K.
Hoke
, and
F. R.
Schauer
, “
Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine
,”
Combust. Flame
176
,
12–22
(
2017
).
16.
F.
Chacon
and
M.
Gamba
, “
Study of parasitic combustion in an optically accessible continuous wave rotating detonation engine
,” AIAA Paper No. 2019-0473,
2019
.
17.
B. A.
Rankin
,
J. R.
Codoni
,
K. Y.
Cho
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Investigation of the structure of detonation waves in a non-premixed hydrogen–air rotating detonation engine using mid-infrared imaging
,”
Proc. Combust. Inst.
37
,
3479
(
2019
).
18.
R.
Yokoo
,
K.
Goto
,
J.
Kim
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
, and
I.
Funaki
, “
Propulsion performance of cylindrical rotating detonation engine
,”
AIAA J.
58
(
12
),
5107
(
2020
).
19.
K.
Goto
,
J.
Nishimura
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
,
I.
Funaki
,
D.
Nakata
,
M.
Uchiumi
, and
K.
Higashino
, “
Propulsive performance and heating environment of rotating detonation engine with various nozzles
,”
J. Propul. Power
35
,
213
(
2019
).
20.
Y.
Wang
,
J.
Le
,
C.
Wang
,
Y.
Zheng
, and
S.
Huang
, “
The effect of the throat width of plug nozzles on the combustion mode in rotating detonation engines
,”
Shock Waves
29
,
471
(
2019
).
21.
Y.
Zhang
,
Z.
Sheng
,
G.
Rongx
,
D.
Shen
,
K.
Wu
, and
J.
Wang
, “
Experimental research on the performance of hollow and annular rotating detonation engines with nozzles
,”
Appl. Therm. Eng.
218
,
119339
(
2023
).
22.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
23.
W.
Zhu
and
Y.
Wang
, “
Effect of hydrogen flow rate and particle diameter on coal-hydrogen-air rotating detonation engines
,”
Int. J. Hydrogen Energy
47
,
1328
(
2022
).
24.
X.-M.
Tang
,
J.-P.
Wang
, and
Y.-T.
Shao
, “
Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor
,”
Combust. Flame
162
,
997
(
2015
).
25.
S.
Ye-Tao
and
W.
Jian-Ping
, “
Three dimensional simulation of rotating detonation engine without inner wall
,” in 23th International Colloquium on the Dynamics of Explosions and Reactive Systems (Springer, Irvine,
2011
).
26.
Y.
Wang
and
J.
Le
, “
A hollow combustor that intensifies rotating detonation
,”
Aerosp. Sci. Technol.
85
,
113
(
2019
).
27.
S.
Yao
,
X.
Tang
,
M.
Luan
, and
J.
Wang
, “
Numerical study of hollow rotating detonation engine with different fuel injection area ratios
,”
Proc. Combust. Inst.
36
,
2649
(
2017
).
28.
S.
Yao
,
Z.
Ma
,
S.
Zhang
,
M.
Luan
, and
J.
Wang
, “
Reinitiation phenomenon in hydrogen-air rotating detonation engine
,”
Int. J. Hydrogen Energy
42
,
28588
(
2017
).
29.
Z.
Xia
,
X.
Tang
,
M.
Luan
,
S.
Zhang
,
Z.
Ma
, and
J.
Wang
, “
Numerical investigation of two-wave collision and wave structure evolution of rotating detonation engine with hollow combustor
,”
Int. J. Hydrogen Energy
43
,
21582
(
2018
).
30.
X.-Y.
Liu
,
Y.-L.
Chen
,
Z.-J.
Xia
, and
J.-P.
Wang
, “
Numerical study of the reverse-rotating waves in rotating detonation engine with a hollow combustor
,”
Acta Astronaut.
170
,
421
(
2020
).
31.
W.
Lin
,
J.
Zhou
,
S.
Liu
,
Z.
Lin
, and
F.
Zhuang
, “
Experimental study on propagation mode of H2/air continuously rotating detonation wave
,”
Int. J. Hydrogen Energy
40
,
1980
(
2015
).
32.
V.
Anand
,
A. C. St.
George
, and
E. J.
Gutmark
,
Hollow Rotating Detonation Combustor
(
American Institute of Aeronautics and Astronautics
,
2016
).
33.
V.
Anand
,
A. St.
George
,
C.
Farbos de Luzan
, and
E.
Gutmark
, “
Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities
,”
Exp. Therm. Fluid Sci.
92
,
314
(
2018
).
34.
K.
Goto
,
K.
Ota
,
A.
Kawasaki
,
N.
Itouyama
,
H.
Watanabe
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
,
I.
Funaki
, and
H.
Kawashima
, “
Cylindrical rotating detonation engine with propellant injection cooling
,”
J. Propul. Power
38
,
410
(
2022
).
35.
Y.
Wang
,
J.
Le
,
C.
Wang
, and
Y.
Zheng
, “
A non-premixed rotating detonation engine using ethylene and air
,”
Appl. Therm. Eng.
137
,
749
(
2018
).
36.
Y.
Wang
and
J.
Le
, “
Rotating detonation engines with two fuel orifice schemes
,”
Acta Astronaut.
161
,
262
(
2019
).
37.
Y.
Wang
and
J.
Le
, “
A rotating detonation engine using methane-ethylene mixture and air
,”
Acta Astronaut.
188
,
25
(
2021
).
38.
S.
Yao
,
X.
Tang
, and
J.
Wang
, “
Numerical study of the propulsive performance of the hollow rotating detonation engine with a Laval nozzle
,”
Int. J. Turbo Jet-Engines
34
,
49
(
2017
).
39.
H.
Zhang
,
W.
Liu
, and
S.
Liu
, “
Experimental investigations on H2/air rotating detonation wave in the hollow chamber with Laval nozzle
,”
Int. J. Hydrogen Energy
42
,
3363
(
2017
).
40.
J.
Sun
,
J.
Zhou
,
S.
Liu
,
Z.
Lin
, and
W.
Lin
, “
Numerical investigation of a non-premixed hollow rotating detonation engine
,”
Int. J. Hydrogen Energy
44
,
17084
(
2019
).
41.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
, and
J.
Wang
, “
Investigation of counter-rotating shock wave phenomenon and instability mechanisms of rotating detonation engine with hollow combustor and Laval nozzle
,”
Int. J. Hydrogen Energy
47
,
23019
(
2022
).
42.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
Investigation of counter-rotating shock wave and wave direction control of hollow rotating detonation engine with Laval nozzle
,”
Phys. Fluids
34
,
056104
(
2022
).
43.
R.
Zhou
and
J.-P.
Wang
, “
Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
,”
Combust. Flame
159
,
3632
(
2012
).
44.
R.
Zhou
,
D.
Wu
,
Y.
Liu
, and
J.-P.
Wang
, “
Particle path tracking method in two- and three-dimensional continuously rotating detonation engines
,”
Chin. Phys. B
23
,
124704
(
2014
).
45.
S.
Yao
,
X.
Tang
,
J.
Wang
,
Y.
Shao
, and
R.
Zhou
, “
Three-dimensional numerical study of flow particle paths in rotating detonation engine with a hollow combustor
,”
Combust. Sci. Technol.
189
,
965
(
2017
).
46.
S.
Zhang
,
J. Z.
Ma
, and
J.
Wang
, “
Theoretical and numerical investigation on total pressure gain in rotating detonation engine
,”
AIAA J.
58
,
4866
(
2020
).
47.
M.
Zhao
,
J.-M.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow, Turbul. Combust.
104
,
261
(
2020
).
48.
Z.-J.
Xia
,
Z.-H.
Sheng
,
D.-W.
Shen
, and
J.-P.
Wang
, “
Numerical investigation of pre-detonator in rotating detonation engine
,”
Int. J. Hydrogen Energy
46
,
31428
(
2021
).
49.
G.
Rong
,
M.
Cheng
,
Z.
Sheng
,
X.
Liu
,
Y.
Zhang
, and
J.
Wang
, “
The behavior of the propagating velocity of rotating detonation waves and counter-rotating shock waves in a hollow combustor
,”
Acta Astronaut.
200
,
371
(
2022
).
50.
N. N.
Smirnov
,
V. B.
Betelin
,
R. M.
Shagaliev
,
V. F.
Nikitin
,
I. M.
Belyakov
,
Y. N.
Deryuguin
,
S. V.
Aksenov
, and
K. A.
Korchazhkin
, “
Hydrogen fuel rocket engines simulation using LOGOS code
,”
Int. J. Hydrogen Energy
39
,
10748
(
2014
).
51.
N. N.
Smirnov
,
V. B.
Betelin
,
V. F.
Nikitin
,
L. I.
Stamov
, and
D. I.
Altoukhov
, “
Accumulation of errors in numerical simulations of chemically reacting gas dynamics
,”
Acta Astronaut.
117
,
338
(
2015
).
52.
Z.-J.
Xia
,
M.-Y.
Luan
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical simulation of wave mode transition in rotating detonation engine with OpenFOAM
,”
Int. J. Hydrogen Energy
45
,
19989
(
2020
).
53.
X.-Y.
Liu
,
M.-Y.
Luan
,
Y.-L.
Chen
, and
J.-P.
Wang
, “
Flow-field analysis and pressure gain estimation of a rotating detonation engine with banded distribution of reactants
,”
Int. J. Hydrogen Energy
45
,
19976
(
2020
).
54.
E. S.
Oran
,
J. W.
Weber
,
E. I.
Stefaniw
,
M. H.
Lefebvre
, and
J. D.
Anderson
, “
A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model
,”
Combust. Flame
113
,
147
(
1998
).
55.
M.
Reynaud
,
F.
Virot
, and
A.
Chinnayya
, “
A computational study of the interaction of gaseous detonations with a compressible layer
,”
Phys. Fluids
29
,
056101
(
2017
).
56.
S.
Taileb
,
J.
Melguizo-Gavilanes
, and
A.
Chinnayya
, “
The influence of the equation of state on the cellular structure of gaseous detonations
,”
Phys. Fluids
33
,
036105
(
2021
).
57.
X. Q.
Yuan
,
C.
Yan
,
J.
Zhou
, and
H. D.
Ng
, “
Computational study of gaseous cellular detonation diffraction and re-initiation by small obstacle induced perturbations
,”
Phys. Fluids
33
,
047115
(
2021
).
58.
Y.
Liu
,
W.
Zhou
,
Y.
Yang
,
Z.
Liu
, and
J.
Wang
, “
Numerical study on the instabilities in H2/air rotating detonation engines
,”
Phys. Fluids
30
,
046106
(
2018
).
59.
K.
Wu
,
S.
Zhang
,
D.
She
, and
J.
Wang
, “
Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor
,”
Phys. Fluids
33
,
126112
(
2021
).
60.
P.
Zhang
,
P. A.
Meagher
, and
X.
Zhao
, “
Multiplicity for idealized rotational detonation waves
,”
Phys. Fluids
33
,
106102
(
2021
).
61.
F.
Wang
and
C.
Weng
, “
Preliminary criterion for positive total pressure gain in kerosene/air rotating detonation combustor
,”
AIAA J.
60
,
6548
(
2022
).
62.
F.
Wang
and
C.
Weng
, “
Effects of divergence inlet on kerosene/air rotating detonation engines
,”
AIAA J.
60
,
4578
(
2022
).
63.
W.
Lin
,
Q.
Shi
,
S.
Liu
,
Z.
Lin
,
Y.
Tong
,
L.
Su
, and
W.
Nie
, “
Study of thrust vector control for the rotating detonation model engine
,”
Int. J. Hydrogen Energy
47
,
1292
(
2022
).
64.
Z.
Sheng
,
M.
Cheng
,
D.
Shen
, and
J.-P.
Wang
, “
An active direction control method in rotating detonation combustor
,”
Int. J. Hydrogen Energy
47
,
23427
(
2022
).
65.
M.
Ó Conaire
,
H. J.
Curran
,
J. M.
Simmie
,
W. J.
Pitz
, and
C. K.
Westbrook
, “
A comprehensive modeling study of hydrogen oxidation
,”
Int. J. Chem. Kinet.
36
,
603
(
2004
).
66.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical study of the mechanisms of the longitudinal pulsed detonation in two-dimensional rotating detonation combustors
,”
Phys. Fluids
35
,
036123
(
2023
).
67.
S.
Yao
,
X.
Tang
, and
W.
Zhang
, “
Structure of a heterogeneous two-phase rotating detonation wave with ethanol–hydrogen–air mixture
,”
Phys. Fluids
35
,
031712
(
2023
).
68.
Y.
Chen
,
X.
Liu
, and
J.
Wang
, “
Effects of reversed shock waves on operation mode in H2/O2 rotating detonation chambers
,”
Energies
14
,
8296
(
2021
).
You do not currently have access to this content.