Aerodynamics of finite-span inclined square flat plates is experimentally investigated at a chord-based Reynolds number of 50 000 in ground effect. The minimum ground height is varied between gap ratios of 0.1 to 1.0 in chord lengths. All components of forces and moments are measured using a load cell for yaw angles between 0° and 180° at an angle of attack of 30°. In addition, surface flow visualization and planar, three-component particle image velocimetry are used to relate the main trends in structural loadings to changes in flow development. The results show that ground effect is significantly modified by yaw angle. As the gap ratio is decreased, a relatively invariant suction side flow and moderate increase in total force and moment driven by ram effect are observed for yaw angles less than 90°. Between yaw angles of 90° and 120°, the suction side flow is also insensitive to gap ratio variations, however, the loading is constant due to absence of ram effect. The suction side sting placement resulted in notable sting effect on both loading and flow for yaw angles between 120° and 150°, obfuscating the impact of ground proximity. For yaw angles above 150°, the onset of stall with decreasing gap ratio leads to a decrease in total loading, with the effect becoming more pronounced at higher yaw angles. These results may be utilized to drive targeted designs of photovoltaic support structures based on site surveys of wind direction and ground clearances.

1.
REN21
, “
Renewables 2022 Global Status Report
,” Report,
2022
, available at https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf.
2.
V.
Ramasamy
,
J.
Zuboy
,
E. O.
Shaughnessy
,
D.
Feldman
,
J.
Desai
,
M.
Woodhouse
,
P.
Basore
, and
R.
Margolis
, “
U. S. Solar photovoltaic system and energy storage cost benchmarks, with minimum sustainable price analysis: Q1 2022
,”
Report No. NREL/TP-7A40-83586
(
National Renewable Energy Laboratory
,
Golden, CO
,
2022
).
3.
R.
Fu
,
D.
Feldman
, and
R.
Margolis
, “
U. S. Solar photovoltaic system cost benchmark: Q1 2018
,”
Report No. NREL/TP-6A20-72399
(
National Renewable Energy Laboratory
,
Golden, CO
,
2018
).
4.
A.
Fage
and
F. C.
Johansen
, “
On the flow of air behind an inclined flat plate of infinite span
,”
Proc. R. Soc. A
116
,
170
(
1927
).
5.
K.
Taira
and
T.
Colonius
, “
Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers
,”
J. Fluid Mech.
623
,
187
(
2009
).
6.
A. C.
DeVoria
and
K.
Mohseni
, “
A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation
,”
Proc. R. Soc. A
473
,
20160760
(
2017
).
7.
M.
Shields
and
K.
Mohseni
, “
Effects of sideslip on the aerodynamics of low-aspect-ratio low-Reynolds-number wings
,”
AIAA J.
50
,
85
(
2012
).
8.
A. C.
Devoria
and
K.
Mohseni
, “
On the mechanism of high-incidence lift generation for steadily translating low-aspect-ratio wings
,”
J. Fluid Mech.
813
,
110
(
2017
).
9.
A.
Hemmati
,
D. H.
Wood
, and
R. J.
Martinuzzi
, in
Progress in Turbulence VII
, edited by
R.
Örlü
,
A.
Talamelli
,
M.
Oberlack
, and
J.
Peinke
(
Springer International Publishing
,
Cham
,
2017
), pp.
227
232
.
10.
T.
Linehan
and
K.
Mohseni
, “
Leading-edge flow reattachment and the lateral static stability of low-aspect-ratio rectangular wings
,”
Phys. Rev. Fluids
2
,
113901
(
2017
).
11.
L.
Dong
,
K. S.
Choi
, and
X.
Mao
, “
Interplay of the leading-edge vortex and the tip vortex of a low-aspect-ratio thin wing
,”
Exp. Fluids
61
,
200
(
2020
).
12.
M.
Shademan
and
A.
Naghib-Lahouti
, “
Effects of aspect ratio and inclination angle on aerodynamic loads of a flat plate
,”
Adv. Aerodyn.
2
,
14
(
2020
).
13.
P.
Gutierrez-Castillo
,
J.
Aguilar-Cabello
,
S.
Alcalde-Morales
,
L.
Parras
, and
C.
del Pino
, “
On the lift curve slope for rectangular flat plate wings at moderate Reynolds number
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104459
(
2021
).
14.
S.
Pieris
,
S.
Yarusevych
, and
S. D.
Peterson
, “
Flow development over inclined flat plates in ground effect and relation to aerodynamic loads
,”
Phys. Fluids
34
,
095113
(
2022
).
15.
M.
Shademan
,
R.
Barron
,
R.
Balachandar
, and
H.
Hangan
, “
Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations
,”
Can. J. Civ. Eng.
41
,
728
(
2014
).
16.
H.
Merarda
,
M.
Aksas
, and
T.
Andrianne
, “
Shape effects on aerodynamic loading of heliostats
,”
Mech. Ind.
21
,
614
(
2020
).
17.
S. O.
Fadlallah
,
T. N.
Anderson
, and
R. J.
Nates
, “
Flow behaviour and aerodynamic loading on a stand-alone heliostat: Wind incidence effect
,”
Arab. J. Sci. Eng.
46
,
7303
(
2021
).
18.
J.
Peterka
,
N.
Hosoya
,
B.
Bienkiewicz
, and
J.
Cermak
, “
Wind load reduction for heliostats
,”
Report No. SERI/STR-253-2859
(
National Renewable Energy Laboratory
,
Golden, CO
,
1986
).
19.
A. C.
DeVoria
and
K.
Mohseni
, in
53rd AIAA Aerospace Science Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, Virginia
,
2015
).
20.
M.
Manolesos
and
S. G.
Voutsinas
, “
Study of a stall cell using stereo particle image velocimetry
,”
Phys. Fluids
26
,
045101
(
2014
).
21.
R.
Bleischwitz
,
R.
de Kat
, and
B.
Ganapathisubramani
, “
Aeromechanics of membrane and rigid wings in and out of ground-effect at moderate Reynolds numbers
,”
J. Fluids Struct.
62
,
318
(
2016
).
22.
R.
Bleischwitz
,
R.
de Kat
, and
B.
Ganapathisubramani
, “
On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect
,”
J. Fluids Struct.
70
,
214
(
2017
).
23.
R.
Bleischwitz
,
R.
de Kat
, and
B.
Ganapathisubramani
, “
Near-wake characteristics of rigid and membrane wings in ground effect
,”
J. Fluids Struct.
80
,
199
(
2018
).
24.
M. R.
Ahmed
, “
Aerodynamics of a cambered airfoil in ground effect
,”
Int. J. Fluid Mech. Res.
32
,
157
(
2005
).
25.
K.
Fukuda
,
R.
Balachandar
, and
R. M.
Barron
, “
Analysis of the ground effect on development of flow structures around an inclined solar panel
,”
Environ. Fluid Mech.
20
,
1463
(
2020
).
26.
M.
Mammar
,
S.
Djouimaa
,
U.
Gärtner
, and
A.
Hamidat
, “
Wind loads on heliostats of various column heights: An experimental study
,”
Energy
143
,
867
(
2018
).
27.
M. J.
Emes
,
A.
Jafari
,
F.
Ghanadi
, and
M.
Arjomandi
, “
Hinge and overturning moments due to unsteady heliostat pressure distributions in a turbulent atmospheric boundary layer
,”
Sol. Energy
193
,
604
(
2019
).
28.
X.
Ortiz
,
D.
Rival
, and
D.
Wood
, “
Forces and moments on flat plates of small aspect ratio with Application to PV wind loads and small wind turbine blades
,”
Energies
8
,
2438
(
2015
).
29.
K.
Cooper
, “
Bluff-body blockage corrections in closed- and open-test-section wind tunnels
,”
Report No. AGARD-AG-336
(
National Technical Information Service
,
Springfield, VA
,
1998
).
30.
B.
Wieneke
, “
Stereo-PIV using self-calibration on particle images
,”
Exp. Fluids
39
,
267
(
2005
).
31.
B.
Wieneke
, “
PIV uncertainty quantification from correlation statistics
,”
Meas. Sci. Technol.
26
,
074002
(
2015
).
32.
R. J.
Moffat
, “
Describing the uncertainties in experimental results
,”
Exp. Therm. Fluid Sci.
1
,
3–17
(
1988
).
33.
S.
Hartlin
, “
Sideslip effects on a square flat plate under freestream turbulence
,” Master thesis (
McGill University
,
2022
).
34.
S.
Mohapatra
, “
Wind tunnel investigation of wind load on a ground mounted photovoltaic tracker
,” Master thesis (
Colorado State University
,
2011
).
35.
A.
Pfahl
, “
Survey of heliostat concepts for cost reduction
,”
J. Sol. Energy Eng.
136
,
014501
(
2013
).
36.
B.
Gong
,
Z.
Li
,
Z.
Wang
, and
Y.
Wang
, “
Wind-induced dynamic response of Heliostat
,”
Renewable Energy
38
,
206
(
2012
).
37.
J.
Peterka
and
R.
Derickson
, “
Wind load design methods for ground-based heliostats and parabolic dish collectors
,”
Report No. SAND-92-7009
(
Sandia National Laboratories
,
Albuquerque, NM
,
1992
).
38.
A.
Pfahl
,
M.
Buselmeier
, and
M.
Zaschke
, “
Wind loads on heliostats and photovoltaic trackers of various aspect ratios
,”
Sol. Energy
85
,
2185
(
2011
).
39.
J. M.
Délery
, “
Robert Legendre and Henri Werlé: Toward the elucidation of three-dimensional separation
,”
Annu. Rev. Fluid Mech.
33
,
129
(
2001
).
40.
S.
Tumse
,
I.
Karasu
, and
B.
Sahin
, “
Experimental investigation of ground effect on the vortical flow structure of a 40° swept delta wing
,”
J. Aerosp. Eng.
35
,
04022055
(
2022
).
41.
M.
Oguz Tasci
,
S.
Tumse
, and
B.
Sahin
, “
Vortical flow characteristics of a slender delta wing in ground effect
,”
Ocean Eng.
261
,
112120
(
2022
).
42.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
43.
L.
Graftieaux
,
M.
Michard
, and
G.
Nathalie
, “
Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows
,”
Meas. Sci. Technol.
12
,
1422
(
2001
).
You do not currently have access to this content.