In the present investigation, a novel focusing technique is proposed and demonstrated to enhance the strength of a synthetic jet array (SJ array). Here, for the same geometric and operating parameters, focusing of the SJ array is achieved by providing a non-linear phase delay ( ) between the actuators. An open-source software, OpenFOAM, is used to study the influence of the Strouhal number ( S t = 0.028, 0.086, and 0.13) and s (range: 0 ° 180 °) on the focusing behavior of the SJ array for fixed Reynolds number R e = 300. Irrespective of s, due to strong suction effect, focusing is not achieved for the SJ array operated at low S t = 0.028. However, maximum focusing is achieved for intermediate S t = 0.086 and = 90 °, which shows an increment of 52 % in the time-averaged streamwise velocity ( V avg) measured at y = 20 d compared to = 0 °. Similarly, the V avg is enhanced by 37 % for high S t = 0.13 with = 120 °. Also, the variation of V avg along the jet centerline shows a decrease in the slope of the decay profiles due to focusing. Most importantly, the temporal evolution of the pumping power shows that no additional energy is required for enhancing the strength of SJ array. The proper orthogonal decomposition analysis illustrates that maximum focusing ( S t = 0.086 and = 90 °) conserves ∼ 43% of total kinetic energy, which was lost due to destructive interaction between the vortices in the case of = 0 °. Hence, for effective implementation in flow control, electronic cooling, and other applications, it is recommended to focus the SJ array by operating it at intermediate S t with a moderate non-linear phase delay ( = 60 ° and 90 °).

1.
B. L.
Smith
and
A.
Glezer
, “
The formation and evolution of synthetic jets
,”
Phys. Fluids
10
(
9
),
2281
2297
(
1998
).
2.
H.
Tang
and
S.
Zhong
, “
Development of a prediction model for synthetic jets in quiescent conditions
,” AIAA Paper No. AIAA 2005-104,
2005
.
3.
M.
Amitay
,
D. R.
Smith
,
V.
Kibens
,
D. E.
Parekh
, and
A.
Glezer
, “
Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators
,”
AIAA J.
39
(
3
),
361
370
(
2001
).
4.
E.
Asgari
and
M.
Tadjfar
, “
Role of phase-difference between two adjacent rectangular synthetic jet actuators in active control of flow over a rounded ramp
,”
Phys. Fluids
34
(
2
),
025101
(
2022
).
5.
M.
Kim
,
E. E.
Essel
, and
P. E.
Sullivan
, “
Effect of varying frequency of a synthetic jet on flow separation over an airfoil
,”
Phys. Fluids
34
(
1
),
015122
(
2022
).
6.
H.
Zong
and
M.
Kotsonis
, “
Interaction between plasma synthetic jet and subsonic turbulent boundary layer
,”
Phys. Fluids
29
(
4
),
045104
(
2017
).
7.
D.
McCormick
, “
Boundary layer separation control with directed synthetic jets
,” AIAA Paper No. AIAA 2000-0519,
2000
.
8.
B.
Ritchie
,
D.
Mujumdar
, and
J.
Seitzman
, “
Mixing in coaxial jets using synthetic jet actuators
,” AIAA Paper No. AIAA 2000-0404,
2000
.
9.
M.
Bolitho
and
J.
Jacob
, “
Thrust vectoring flow control using plasma synthetic jet actuators
,” AIAA Paper No. AIAA 2008-1368,
2008
.
10.
V.
Arumuru
,
K.
Rajput
,
R.
Nandan
,
P.
Rath
, and
M.
Das
, “
A novel synthetic jet based heat sink with PCM filled cylindrical fins for efficient electronic cooling
,”
J. Energy Storage
58
,
106376
(
2023
).
11.
X. M.
Tan
,
J. Z.
Zhang
,
S.
Yong
, and
G. N.
Xie
, “
An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer
,”
Int. J. Heat Mass Transfer
90
,
227
238
(
2015
).
12.
F.
Bazdidi-Tehrani
,
M.
Karami
, and
M.
Jahromi
, “
Unsteady flow and heat transfer analysis of an impinging synthetic jet
,”
Heat Mass Transfer
47
(
11
),
1363
1373
(
2011
).
13.
S. J.
Campbell
,
W. Z.
Black
,
A.
Glezer
, and
J. G.
Hartley
, “
Thermal management of a laptop computer with synthetic air microjets
,” in
Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm'98)
(
IEEE
,
1998
), pp.
43
50
.
14.
J. M.
Shuster
and
D. R.
Smith
, “
Experimental study of the formation and scaling of a round synthetic jet
,”
Phys. Fluids
19
(
4
),
045109
(
2007
).
15.
T.
Persoons
and
T. S.
O'Donovan
, “
A pressure-based estimate of synthetic jet velocity
,”
Phys. Fluids
19
(
12
),
128104
(
2007
).
16.
E.
Smyk
,
S.
Wawrzyniak
, and
K.
Peszyński
, “
Synthetic jet actuator with two opposite diaphragms
,”
Mech. Mech. Eng.
24
(
1
),
17
25
(
2020
).
17.
B. L.
Smith
and
G. W.
Swift
, “
A comparison between synthetic jets and continuous jets
,”
Exp. Fluids
34
,
467
472
(
2003
).
18.
R.
Mahalingam
,
N.
Rumigny
, and
A.
Glezer
, “
Thermal management using synthetic jet ejectors
,”
IEEE Trans. Compon. Packag. Technol.
27
(
3
),
439
444
(
2004
).
19.
M.
Chaudhari
,
B.
Puranik
, and
A.
Agrawal
, “
Effect of orifice shape in synthetic jet based impingement cooling
,”
Exp. Therm. Fluid Sci.
34
(
2
),
246
256
(
2010
).
20.
M. B.
Gillespie
,
W. Z.
Black
,
C.
Rinehart
, and
A.
Glezer
, “
Local convective heat transfer from a constant heat flux flat plate cooled by synthetic air jets
,”
J. Heat Transfer.
128
(
10
),
990
10000
(
2006
).
21.
M.
Hatami
,
F.
Bazdidi-Tehrani
,
A.
Abouata
, and
A.
Mohammadi-Ahmar
, “
Investigation of geometry and dimensionless parameters effects on the flow field and heat transfer of impingement synthetic jets
,”
Int. J. Therm. Sci.
127
,
41
52
(
2018
).
22.
M.
Chaudhari
,
B.
Puranik
, and
A.
Agrawal
, “
Heat transfer characteristics of synthetic jet impingement cooling
,”
Int. J. Heat Mass Transfer
53
(
5–6
),
1057
1069
(
2010
).
23.
T.
Berk
,
G.
Gomit
, and
B.
Ganapathisubramani
, “
Vectoring of parallel synthetic jets: A parametric study
,”
J. Fluid Mech.
804
,
467
489
(
2016
).
24.
G. K.
Jankee
and
B.
Ganapathisubramani
, “
Interaction and vectoring of parallel rectangular twin jets in a turbulent boundary layer
,”
Phys. Rev. Fluids
6
(
4
),
044701
(
2021
).
25.
G.
Ceglia
,
M.
Invigorito
,
M.
Chiatto
,
C. S.
Greco
,
G.
Cardone
, and
L.
de Luca
, “
Flow characterization of an array of finite-span synthetic jets in quiescent ambient
,”
Exp. Therm. Fluid Sci.
119
,
110208
(
2020
).
26.
L.
Mangate
,
H.
Yadav
,
A.
Agrawal
, and
M.
Chaudhari
, “
Experimental investigation on thermal and flow characteristics of synthetic jet with multiple-orifice of different shapes
,”
Int. J. Therm. Sci.
140
,
344
357
(
2019
).
27.
T.
Yeom
,
L.
Huang
,
M.
Zhang
,
T.
Simon
, and
T.
Cui
, “
Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array
,”
Int. J. Heat Mass Transfer
143
,
118484
(
2019
).
28.
B. L.
Smith
and
A.
Glezer
, “
Vectoring of adjacent synthetic jets
,”
AIAA J.
43
(
10
),
2117
2124
(
2005
).
29.
S.
Alimohammadi
,
E.
Fanning
,
T.
Persoons
, and
D. B.
Murray
, “
Characterization of flow vectoring phenomenon in adjacent synthetic jets using CFD and PIV
,”
Comput. Fluids
140
,
232
246
(
2016
).
30.
A.
McGuinn
,
D. I.
Rylatt
, and
T. S.
O'Donovan
, “
Heat transfer enhancement to an array of synthetic air jets by an induced crossflow
,”
Appl. Therm. Eng.
103
,
996
1003
(
2016
).
31.
D.
Guo
,
A. W.
Cary
, and
R. K.
Agarwal
, “
Numerical simulation of the interaction of two adjacent synthetic jet actuators
,” in
Computational Fluid Dynamics 2002: Proceedings of the Second International Conference on Computational Fluid Dynamics, ICCFD
, Sydney, Australia, 15–19 July 2002 (
Springer Berlin Heidelberg
,
2003
), pp.
751
756
.
32.
L.
Zhen-Bing
and
X.
Zhi-Xun
, “
PIV measurements and mechanisms of adjacent synthetic jets interactions
,”
Chin. Phys. Lett.
25
(
2
),
612
(
2008
).
33.
Y.
Liu
,
B.
Wang
, and
S.
Liu
, “
Investigation of phase excitation effect on mixing control in coaxial jets
,”
J. Therm. Sci.
18
,
364
369
(
2009
).
34.
H.
Riazi
and
N.
Ahmed
, “
Numerical investigation on two-orifice synthetic jet actuators of varying orifice spacing and diameter
,” AIAA Paper No. AIAA 2011-3171,
2011
.
35.
M.
Watson
,
A. J.
Jaworski
, and
N. J.
Wood
, “
Contribution to the understanding of flow interactions between multiple synthetic jets
,”
AIAA J.
41
(
4
),
747
749
(
2003
).
36.
Z. B.
Luo
,
Z. X.
Xia
, and
B.
Liu
, “
An adjustable synthetic jet by a novel PZT-driven actuator with a slide block
,”
J. Phys.: Conf. Ser.
34
(
1
),
487
(
2006
).
37.
J.
Pasa
,
S.
Panda
, and
V.
Arumuru
, “
Influence of Strouhal number and phase difference on the flow behavior of a synthetic jet array
,”
Phys. Fluids
34
(
6
),
065118
(
2022
).
38.
Q.
Gallas
,
On the Modeling and Design of Zero-Net Mass Flux Actuators
(
University of Florida
,
2004
).
39.
B. J.
Boersma
, “
Numerical simulation of the noise generated by a low Mach number, low Reynolds number jet
,”
Fluid Dyn. Res.
35
(
6
),
425
(
2004
).
40.
F.
Capuano
,
A.
Palumbo
, and
L.
de Luca
, “
Comparative study of spectral-element and finite-volume solvers for direct numerical simulation of synthetic jets
,”
Comput. Fluids
179
,
228
237
(
2019
).
41.
P.
Das
and
S.
Rana
, “
Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis
,”
Math. Methods Appl. Sci.
44
(
11
),
9419
9440
(
2021
).
42.
P.
Das
and
S.
Natesan
, “
Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations
,”
Int. J. Comput. Math.
92
(
3
),
562
578
(
2015
).
43.
T. B.
Gohil
,
A. K.
Saha
, and
K.
Muralidhar
, “
Simulation of the blooming phenomenon in forced circular jets
,”
J. Fluid Mech.
783
,
567
604
(
2015
).
44.
R. J.
Singh
and
T. B.
Gohil
, “
The numerical analysis on the development of Lorentz force and its directional effect on the suppression of buoyancy-driven flow and heat transfer using OpenFOAM
,”
Comput. Fluids
179
,
476
489
(
2019
).
45.
M.
Jain
,
B.
Puranik
, and
A.
Agrawal
, “
A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow
,”
Sens. Actuators, A
165
(
2
),
351
366
(
2011
).
46.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propogation
, edited by
A. M.
Yaglam
and
V. I.
Tatarsky
(
Doklady Akademii Nauk SSSR
,
Nauka, Moscow
,
1967
).
47.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
(
3
),
561
571
(
1987
).
48.
L. A.
Silva
and
A.
Ortega
, “
Convective heat transfer in an impinging synthetic jet: A numerical investigation of a canonical geometry
,”
J. Heat Transfer
135
(
8
),
082201
(
2013
).
49.
S.
Panda
,
T. B.
Gohil
, and
V.
Arumuru
, “
Evolution of flow structure from a coaxial synthetic jet
,”
Int. J. Mech. Sci.
231
,
107588
(
2022
).
50.
L. H.
Feng
,
J. J.
Wang
, and
C.
Pan
, “
Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control
,”
Phys. Fluids
23
(
1
),
014106
(
2011
).
51.
L.
Qiang
,
L.
Zhenbing
,
D.
Xiong
,
W.
Lin
, and
Z.
Yan
, “
Numerical investigation on flow field characteristics of dual synthetic cold/hot jets using POD and DMD methods
,”
Chin. J. Aeronaut.
33
(
1
),
73
87
(
2020
).
52.
A.
Dipankar
,
T. K.
Sengupta
, and
S. B.
Talla
, “
Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers
,”
J. Fluid Mech.
573
,
171
190
(
2007
).
53.
R.
Perrin
,
M.
Braza
,
E.
Cid
,
S.
Cazin
,
A.
Barthet
,
A.
Sevrain
, and
F.
Thiele
, “
Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD
,”
Exp. Fluids
43
,
341
355
(
2007
).
You do not currently have access to this content.